• Title/Summary/Keyword: phase transformation temperature

Search Result 508, Processing Time 0.031 seconds

Phase Transformation and Mechanical Properties of Reaction Sintered Mullite-Zirconia (Yttria) Composite (반응소결된 물라이트-지르코니아(이트리아) 복합체의 상변태와 기계적 성질에 관한 연구)

  • 오경영;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.549-555
    • /
    • 1991
  • Mullite-zirconia (0∼4 mol% yttria) composites were obtained by In-situ sintering of zircon and alumina mixture, and their mechanical properties were studied in conjuction with microstructure observation. Martensitic transformation temperature (Ms) of zirconia dispersed in the mullite matrix decreased with Y2O3 contents and was about 600$^{\circ}C$ for ZrO2 containing 4 mol% Y2O3. On cooling of this composites, tetragonal to monoclinic phase transformation induced microcracks at the grain boundary of mullite matrix. The microcracks seemed to absorb the fracture energy in stress field during mechanical tests. Therefore, toughening mechanisms of this composite were considered to nucleation and extension of microcrack, and crack deflection mechanism due to the difference of thermal expansion coefficient between matrix and dispersed phase.

  • PDF

Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions (어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구)

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF

The Effect of Ageing on the Transformation Behavior of Ti-50.4at.% Ni Alloy(II) (Ti-50.4at.%Ni합금의 변태거동에 미치는 시효처리의 영향(II))

  • Kim, Sung-Jin;Woo, Heung-Sik;Park, Sung-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.27-33
    • /
    • 2005
  • The shape memory effect in Ti-50.4at.%Ni alloy after solution treatment at 1273K for 2h and aged at 350, 450, $550^{\circ}C$ for 0.5, 1, 1.5, 2, 4, 10hrs had been investigated by differential scanning calorimetry measurement. It was found that ageing in the temperature range of $350^{\circ}C{\sim}550^{\cric}C$ induced complex transformation behavior, involving the R-phase and multiple-stage martensitic transformation. Usually aged Ni-rich NiTi alloys undergo martensitic transformation on cooling from high temperatures in two step : Austenite to R-phase and then R-phase to Martensite (normal behavior). In sample aged at $350^{\circ}C$ two distinct DSC peaks arised giving evidence of intermediate stages of martensite transformation. This results in the nucleation and growth of coherent $Ni_4Ti_3$-precipitate. These explain all features of the evolution of DSC charts during ageing including the number of distinct DS peaks and their positions.

In-Situ TEM Observation on Phase Formation of $TiO_2$ Nanoparticle Synthesized by Flame Method

  • Jie, H.S.;Park, H.;Kim, K.H.;Ahn, J.P.;Park, J.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.469-470
    • /
    • 2006
  • [ $TiO_2$ ] nanoparticle was synthesized by the flame method, which was controlled by varying the ratio and flow rate of gas mixtures consisting of oxygen (oxidizer), methane (fuel) and nitrogen (carrier gas). The crystalline phases of $TiO_2$ nanoparticle depended strongly on the temperature distribution in the flame, whereas the morphology was not sensitive. We proved that the anatase phase formed without the phase transformation in the flame and the rutile phase generated through several phase transformations.

  • PDF

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(II) -From Austenite to Martensite- (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소 해석(II) -오오스테나이트에서 마르텐사이트로의 변태-)

  • Kim, O.S.;Song, G.H.;Koo, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.12-23
    • /
    • 1995
  • In this a set of constitutive equation relevant to the analysis of thermo-elasto-plastic materials with phase transformation during quenching process was presented on the basis of continuum thermo-dynamic. In calculating the transient thermal stresses, temperature between coolant and specimen(SM45C) surface was determined from the heat transfer coefficient. A calculation was made for specimen with 40mm in diameter quenched in coolant from $820^{\circ}C$ and the results are as follow. Stresses at starting point of transformation always show the maximum tensile value. Reverse of stresses takes place after completion of transformation of inner part at specimen.

  • PDF

Effect of Nb-content and Cooling Rate during ${\beta}$-quenching on Phase Transformation of Zr Alloys (${\beta}$-열처리시 Nb 첨가량과 냉각속도가 Zr 합금의 상변태에 미치는 영향)

  • Choi, B.K.;Kim, H.G.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.271-277
    • /
    • 2004
  • Zr-xNb alloys (x = 0.2, 0.8, 1.5 wt.%) were prepared to study the characteristics of the phase transformation in Zr-Nb system. The samples were heat treated at ${\beta}$-temperature ($1020^{\circ}C$) for 20 min and then cooled with different cooling rate. The microstructures of the specimens having the same compositions were changed with cooling rate and Nb content. The Widmanst$\ddot{a}$tten structure was observed on the furnace-cooled sample. The relationship between ${\alpha}$-Widmanst$\ddot{a}$tten and ${\beta}$-phase was the {0001}${\alpha}$//{110}${\beta}$, <11$\bar{2}$0>//<111>. The ${\beta}$-phase in Widmanst$\ddot{a}$tten structure of Zr-Nb alloys containing Nb more than solubility limit was identified as ${\beta}_{Zr}$ phase which was a stable phase at high temperature. In the water quenched samples, two kinds of martensite structures were observed depending on the Nb-concentration. The lath martensite was formed in Zr-0.2, 0.8 wt.% Nb alloys and the plate martensite having twins was formed in Zr-1.5 wt.% Nb alloy.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Change of phase transformation and bond strength of Y-TZP with various hydrofluoric acid etching

  • Mi-Kyung Yu;Eun-Jin Oh;Myung-Jin Lim;Kwang-Won Lee
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.54.1-54.10
    • /
    • 2021
  • Objectives: The purpose of this study was to quantify phase transformation after hydrofluoric acid (HF) etching at various concentrations on the surface of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), and to evaluate changes in bonding strength before and after thermal cycling. Materials and Methods: A group whose Y-TZP surface was treated with tribochemical silica abrasion (TS) was used as the control. Y-TZP specimens from each experimental group were etched with 5%, 10%, 20%, and 40% HF solutions at room temperature for 10 minutes. First, to quantify the phase transformation, Y-TZP specimens (n = 5) treated with TS, 5%, 10%, 20% and 40% HF solutions were subjected to X-ray diffraction. Second, to evaluate the change in bond strength before and after thermal cycling, zirconia primer and MDP-containing resin cement were sequentially applied to the Y-TZP specimen. After 5,000 thermal cycles for half of the Y-TZP specimens, shear bond strength was measured for all experimental groups (n = 10). Results: The monoclinic phase content in the 40% HF-treated group was higher than that of the 5%, 10%, and 20% HF-treated groups, but lower than that of TS-treated group (p < 0.05). The 40% HF-treated group showed significantly higher bonding strength than the TS, 5%, and 10% HF-treated groups, even after thermal cycling (p < 0.05). Conclusions: Through this experiment, the group treated with SiO2 containing air-borne abrasion on the Y-TZP surface showed higher phase transformation and higher reduction in bonding strength after thermal cycling compared to the group treated with high concentration HF.

Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC (카본 및 보론 첨가가 탄화규소 열간 가압 소결거동 및 기계적 특성에 미치는 영향)

  • Ahn, Jong-Pil;Chae, Jae-Hong;Kim, Kyoung-Hun;Park, Joo-Seok;Kim, Dae-Gean;Kim, Hyoung-Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • SiC has an excellent resistance to oxidation and corrosion, high temperature strength and good thermal conductivity. However, it is difficult to density because of its highly covalent bonding characteristics. Hot-press sintering process was applied to fabricate fully densified SiC ceramics with carbon and boron addition as a sintering additive. The addition of carbon improved the mechanical properties of SiC because it could induce a fine and homogeneous microstructure by the suppression of abnormal growth of SiC grain. Also, the addition of carbon could control the phase transformation of SiC. The phase transformation of 6H to 4H increased with sintering temperature but the addition of carbon decreased that kind of phase transformation.