• Title/Summary/Keyword: phase separator

Search Result 55, Processing Time 0.027 seconds

Sintering Characteristics of Si/SiC Mixtures from Si Waste of Solar Cell Industry (태양광(太陽光) 산업(産業)에서 발생(發生)하는 Si/SiC 혼합물(混合物)의 소결특성(燒結特性) 연구(硏究))

  • Kwon, Woo Teck;Kim, Soo Ryong;Kim, Younghee;Lee, Yoon Joo;Kim, Jong Il;Lee, Hyun Jae;Oh, Sea Cheon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • The recycling of the Si/SiC mixture sludge obtained from solar cell industry is very significant, environmentally and economically. The sintering characteristics of Si/SiC mixture sludge was studied for the purpose of recycling. In this study, to understand sintering behavior, SiC content in the Si/SiC mixture was controlled using an air separator. Various Si/SiC mixtures having different SiC contents were sintered using carbon black, clay and aluminum hydroxide as sintering aids. Physical properties of Si/SiC mixture and sintered bodies have been characterized using SEM, XRD, particle size analyzer and apparent density measurement. SEM and particle size analysis result confirmed that the fine particles less than 1 ${\mu}m$ decreased or removed more effectively through the air separator in the case of 95% SiC sample compared than the case of 75% SiC sample or original SiC sample. Further, with addition of the Aluminum Hydroxide, ${\beta}$-cristobalite phase gradually decreased while mullite phase gradually increased. The addition of the carbon black improved the sintering characteristics.

Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure (액체질소 분사 안정화를 통한 극저온가공 품질 향상)

  • Gang, Myeong Gu;Min, Byung-Kwon;Kim, Tae-Gon;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

Capacity Modulation of a Heat Pump System by Changing the Composition of Refrigerant Mixtures (혼합냉매의 성분비 조절을 통한 열펌프의 용량조절)

  • 김민성;김민수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.258-266
    • /
    • 2000
  • Experimental investigation and cycle simulation of a capacity modulation of a heat pump system using a hydrofluorocarbon (HFC) refrigerant mixture, R32/134a as an alternative to R22, have been done. In the cycle simulation, the refrigeration system was operated by assigning the temperatures of the external heat transfer fluids with the heat exchangers generalized by an average effective temperature difference. Heating capacity, cooling capacity, and coefficient of performance (COP) of the system were investigated at several operating conditions. Experimental apparatus which had a refrigeration part and a composition changing part was built, and the performance of the heat pump system filled with R32/134a mixture was investigated. A gas-liquid separator was used in the experiment to change the composition by collecting the vapor and the liquid Phase separately, The mass fraction of the charged refrigerant in the heat pump system was 40/60 and 70/30 by weight percentage. The composition of the refrigerant with initial composition of 40/60 varied from 29/71 to 41/59 in the refrigeration cycle. For the refrigerant with initial composition of 70/30, the composition varied from 65/35 to 75/25.

  • PDF

Characteristics of T-phase flow distribution and pressure drop in a horizontal T-type evaporator tube (수평 T형 증발관내 2상류의 유량분배 및 압력강하 특성)

  • 박종훈;조금남;조홍기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.658-668
    • /
    • 1999
  • The objective of the present study is to investigate the effect of experimental parameters on the hydrodynamic characteristics in a horizontal tee-type evaporator using R-22. The experimental apparatus consisted of an unheated tee-type test section, a liquid-vapor separator, a preheated, mass flow meters, a plate heat exchanger, pump, and other measurement devices. The experimental parameters were mass flux(500 and 600kg/$m^2$s), inlet quality(0.1~0.3) and separation ratio(0.3~0.7). Absolute pressure at the inlet of the test section was 0.652 MPa. The branch-to-inlet inner diameter ratio was 0.61. Pressure gradient at the branch section was larger than that at the run section at the same separation ratio. Pressure drop per unit length increased at the run section and decreased at the branch section as the separation ratio increased. Pressure drop predicted by the separated flow model agreed with experimental data within -35 to +16%. Generally, predicted values showed similar trend with the data. Mass flow ratio of vapor refrigerant was affected by the inlet quality more than the mass flux.

  • PDF

Current R&D Trend of Nanofiber Membranes (나노섬유 분리막의 최근 연구개발동향)

  • Kim, Tae Heon
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.395-403
    • /
    • 2012
  • R&D of Nanofiber membrane has been carried out in the various fields, gas, water treatment, energy, and etc, with the continuous growth of membrane technology. There are several preparation methods for nanofiber, i.e. drawing, template synthesis, phase separation, self-assembly, and electrospinning. However, an electrospinning has many advantages such as high productivity, low production cost, easy to select law material, high relative surface area, and easy to functionalize. Nanofiber has been used in the field of membrane technologies such as secondary battery and water treatment fields. For the secondary battery separator, the separators having a high power and high thermal stability can be developed with spread of nanofiber on the commercial PP or PE/PP separators. High functional membranes can be also developed by adding the functional additives like antibacterial materials in the nanofiber membrane. It can be expected the high value added with nanofiber membrane because of its diverse applications from the water treatment to the energy field and because of its various functional advantages.

Preparation and Characterization of Microporous PVdF Membrane for Li-ion Rechargeable Battery (이차전지용 미세다공성 PVdF 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Jeong, Chul-Ho;Lee, Young-Moo;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.233-243
    • /
    • 2007
  • In this study, a separate. which is a microporous membrane based on poly(vinylidene fluoride)(PVdF) was prepared by phase inversion method. Being prepared by dissolving the PVdF in the N,N'-dimethylformamide(DMF) with mechanical stirring, the homogenous casting solution was cast onto a clean glass plate. Pore size and porosity of the membranes were controlled by changing preparation condition. The highest porosity of the membrane was 78.6%. The mechanical property of the membrane was determined by using an universal testing machine(UTM). The morphology of the membrane was investigated by scanning electron microscopy(SEM). The cross-section of the membrane shows sponge-like small micro-pores.

Experimental Study on Heating Performance Characteristic of 100 kW Heat Pump to Generate ℃ Steam (120℃ 스팀 생성을 위한 100 kW급 히트펌프의 실험적 연구)

  • Wang, Eunseok;Na, Sun-Ik;Lee, Gilbong;Baik, Young-Jin;Lee, Young-Soo;Lee, Beomjoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.100-106
    • /
    • 2018
  • Recently, the development of a heat pump technology to recover process waste heat and to generate steam of $120^{\circ}C$ or higher required for industrial processes, has attracted attention. The research of conventional heat pump utilizing the available energy is used primarily for air conditioning, and the production temperature is about $60^{\circ}C$, so it is difficult to utilize it for industrial use. Therefore, in this study, we developed a steam heat pump (SGHP) which recovers the waste heat of process and generates steam at $120^{\circ}C$. The low-pressure refrigerant R245fa, considered to be an eco-friendly refrigerant, has been selected as the refrigerant for SGHP in this study since its Ozone Depletion Potential (ODP) is zero and the Global Warming Potential (GWP) is relatively low. A flash tank functioning as a phase separator was installed in the rear stage of the condenser, and the saturated water of high temperature was decompressed to generate steam. It was started at the initial temperature of $70^{\circ}C$, and it was confirmed that $120^{\circ}C$ steam was produced after the system stabilized. We have conducted experiments by modifying the system, and ultimately achieved a heating capacity of 101.4 kW and a COP of 3.05.

A Study on the FIR Digital Filter using Modified Window Function (변형된 창함수를 사용한 FIR 디지털 필터에 관한 연구)

  • 강경덕;배상범;김남호;류지구
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2003
  • The use of digital filters in the signal process field is increasing rapidly with development of the modern industrial society. Especially, detail processors, Y/C separators, ghost removing filters, standard converters (NTSC to PAL or PAL to NTSC) and noise reducers, all of which use digital filters, tend to be used in digital video and audio processing, CATV and various communication fields. Generally, there are two different digital filters, the Rf (infinite impulse response) filter and the FIR (finite impulse response) filter in digital filter. In this paper, we have designed FIR filter which has the phase linearity and the easiness of creation. In the design of the FIR digital filter, the window function is used to alleviate the ripples caused by Gibbs Phenomenon around the cut off frequency of the band pass. But there're some problems to choose proper window function for the design destination due to its fixed values. Therefore, in this paper, we designed a modified Hanning window with new parameter which is adaptively chosen corresponding to design objectives. The digital filter was simulated to prove the validity of the model and it was compared with the Hamming, the Manning, the Blacknan and the Kaiser window function. And we have used peak side-lobe and transient characteristics as standard of judgement.

  • PDF

Preparation and Characterization of PVdF-HFP Microporous Membranes for Li-ion Rechargeable Battery (Poly(vinylidene fluoride-hexafluoropropylene)를 이용한 이차전지용 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Yoo, Hyun-Oh;Kim, Jong-Man;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.359-368
    • /
    • 2007
  • The copolymer membranes, poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) were prepared by phase inversion method using as an additive with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The highest porosity of the membrane was 60%. The surface and cross-section of the membranes was observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM). Tensile strength of measured membranes is presented the maximum 6.57 MPa at 30 wt% of PVdF-HFP.

Fabrication of Photocatalytic TiO2 thin Film Using Aerosol Deposition Method and its Filtration Characteristics (에어로졸 증착법을 이용한 광촉매 TiO2 박막 제조 및 박막의 여과 특성)

  • Choi, Wonyoul;Lee, Jinwoo;Kim, Shijun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2010
  • The objective of this study is to evaluate the effect of operational parameters such as rotation speed and vibrating milling time for the fabrication of photocatalytic $TiO_2$ thin film using aerosol deposition methods. $TiO_2$ powders produced in the range of 1,000-3,000 rpm of rotation speed of centrifugal separator are ineffective on the fabrication of $TiO_2$ thin film by aerosol deposition due to the problem of nozzle powder jam. $TiO_2$ powders controlled by vibrating milling had about 420 nm of average diameter after 2 hr of vibrating milling time. The result of XRD analysis indicated that $TiO_2$ powders had a anatase phase. Vibrating milling methods was considered to be an effective pre-treatment process for $TiO_2$ powder control. Consequently $TiO_2$ photocatalytic thin film with dispersion of anatase crystallites controled by vibrating milling was successfully fabricated by aerosol deposition. The permeation flux of $TiO_2$ photocatalytic thin film with the immobilized $TiO_2$ powder was higher than that of suspended $TiO_2$ powder. Therefore, $TiO_2$ photocatalytic thin film promises to be one of the effective methods for enhancing filtration performance for the treatment of organic pollutants.