• Title/Summary/Keyword: phase distortion

Search Result 808, Processing Time 0.023 seconds

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

In-Flight Calibration Method for Direction Finding of Communication Signals based on Aviation Systems (항공 시스템 기반의 통신신호 방향 탐지를 위한 비행 보정 기법)

  • Chang, Jaewon;Joo, Jeungmin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.290-299
    • /
    • 2019
  • Direction-finding equipment with multiple antennas are used to estimate the direction of a signal emitted by a source; they can be used to rescue a victim or locate a specified source. During direction finding, reflection waves are present and signal distortion is observed depending on the external shape and material of a system that incorporates the direction-finding equipment and multiple antennas. Therefore, to accurately estimate the azimuth of the signal source and develop the direction-finding equipment, a calibration should be performed to reflect the influence of the antenna arrangement(layout) and system contour. In this paper, we describe an in-flight calibration method to develop direction-finding equipment to locate communication signals using an aviation system, and we analyze the direction-finding performance when applying phase calibration data obtained through the in-flight calibration.

Single-Stage AC/DC Converter for Wireless Power Transfer Operating With Robustness in Wide Air Gaps (넓은 공극에서 강인성을 가지고 동작하는 단일전력단 무선전력전송 교류-직류 컨버터)

  • Woo, Jeong-Won;Jang, Ki-Chan;Kim, Min-Ji;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • In the field of electric vehicles and AGVs, wireless power transfer (WPT) charging systems have been developed recently because of its convenience, reliability, and positive environmental impact due to cable and cord elimination. In this study, we propose a WPT charging system using a single stage AC-DC converter that can be reduced in size and weight and thus can ensure convenience. The proposed single-stage AC-DC converter can control a wide output voltage (36-54 VDC) within coupling ranges by using the variable link voltage applied to the WPT resonant circuit through phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype that can operate with an air gap range of 40-50 mm is fabricated and validated through experimental results and analysis.

Choice of Efficient Sampling Rate for GNSS Signal Generation Simulators

  • Jinseon Son;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.237-244
    • /
    • 2023
  • A signal generation simulator is an economical and useful solution in Global Navigation Satellite System (GNSS) receiver design and testing. A software-defined radio approach is widely used both in receivers and simulators, and its flexible structure to adopt to new signals is ideally suited to the testing of a receiver and signal processing algorithm in the signal design phase of a new satellite-based navigation system before the deployment of satellites in space. The generation of highly accurate delayed sampled codes is essential for generating signals in the simulator, where its sampling rate should be chosen to satisfy constraints such as Nyquist criteria and integer and non-commensurate properties in order not to cause any distortion of original signals. A high sampling rate increases the accuracy of code delay, but decreases the computational efficiency as well, and vice versa. Therefore, the selected sampling rate should be as low as possible while maintaining a certain level of code delay accuracy. This paper presents the lower limits of the sampling rate for GNSS signal generation simulators. In the simulation, two distinct code generation methods depending on the sampling position are evaluated in terms of accuracy versus computational efficiency to show the lower limit of the sampling rate for several GNSS signals.

SC-FDE System Using Decision-Directed Method Over Time-Variant Fading Channels (시변 페이딩 채널에 대한 결정 지향 방식의 SC-FDE 시스템)

  • Kim, Ji-Heon;Yang, Jin-Mo;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-234
    • /
    • 2007
  • This paper describes a transmission method based on a single carrier with frequency domain equalization (SC-FDE) scheme with cyclic prefix(CP). The SC-FDE has similar features with orthogonal frequency division multiplexing(OFDM). Similar to OFDM, a SC-FDE system is computationally efficient since equalization is reformed on a block of data in the frequency domain. Especially, it has the advantage of low sensitivity to nonlinear distortion compared to OFDM. In this paper, we design a SC-FDE receiver using decision-directed method, and present simulation results.

Performance Evaluation of FD-CI-OFDM System with PAPR Reduction and Frequency Diversity Effects (PAPR 감소와 주파수 다이버시티 효과를 갖는 FD-CI-OFDM 시스템의 성능 평가)

  • Kim, Seon-Ae;Lee, Il-Jin;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Orthogonal frequency division multiplexing(OFDM) that is very useful for the high-speed communication system has serious problem of high peak-to-average power ratio(PAPR) in time domain. Because of this, the non-linear distortion can be produced and system performance gets worse. CI-OFDM system can get the peak power lowered. In this CI-OFDM system, each parallel data is distributed into N all sub-carriers and conveyed by the orthogonal phase factor. Also, CI-OFDM shows frequency diversity effect. Therefore, CI-OFDM system is better than ordinary OFDM system in terms of BER performance and the PAPR reduction. When it is implemented, however, there is a serious problem whether it can separate and compensate the phase factor in order in the receiver. Because all bits are transmitted simultaneously over all subcarriers and each other phase factors in transmitter. In this paper, we propose and evaluate a FD-CI-OFDM system that is a version of improved CI-OFDM. This is designed by use of the Walsh Hadamard sequence. The FD-CI-OFDM shows better performance than ordinary OFDM and CI-OFDM system.

Effects of plasma ion nitriding temperature using DC glow discharge on improvement of corrosion resistance of 304 stainless steel in seawater (천연 해수에서 304 스테인리스강의 내식성에 미치는 DC glow 방전 플라즈마 이온질화처리 온도의 영향)

  • Chong, Sang-Ok;Park, Il-Cho;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.238-244
    • /
    • 2017
  • Plasma ion nitriding has been widely used in various industries to improve the mechanical properties of materials, especially stainless steels by increasing the surface hardness. It has the particular advantages of less distortion compared to that in the case of hardening of steel, gas nitriding, and carburizing; in addition, it allows treatment at low-temperatures, and results in a high surface hardness and improved corrosion resistance. Many researchers have demonstrated that the plasma ion nitriding process should be carried out at temperatures of below $450^{\circ}C$ to improve corrosion resistance via the formation of the expanded austenite phase(S-phase). Most experimentals studied to date have been carried out in chloride solutions like HCl or NaCl. However, the electrochemical characteristics for the chloride solutions and natural seawater differ. Hence, in this work, plasma ion nitriding of 304 stainless steels was performed at various temperatures, and the electrochemical characteristics corresponding to the different process temperatures were analyzed for the samples in natural seawater. Finally the optimum plasma ion nitriding temperature that resulted in the highest corrosion resistance was determined.