• Title/Summary/Keyword: phase difference

Search Result 3,107, Processing Time 0.028 seconds

B-1 Cells Differ from Conventional B (B-2) Cells: Difference in Proliferation (B세포의 증식에 있어 B-1 임파구와 B-2 임파구의 차이점에 대한 연구)

  • Yeo, Seung Geun;Cho, Joong Saeng;Park, Dong Choon;Rothstein, Thomas L.
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.155-160
    • /
    • 2004
  • Background: B-1 cells differ from conventional B-2 cells both phenotypically and functionally. The aim of this study was to investigate the difference between peritoneal B-1 cells and splenic B-2 cells in proliferation. Methods: We obtained sorted B-1 cells from peritoneal fluid and B-2 cells from spleens of mice. During the culture of these cells, immunoglobulin secreted into the culture supernatants was evaluated by enzymelinked immunosorbent assay. Entering of S phase in response to LPS-stimuli was measured by proliferative assay. Results: Spontaneous Immunoglobulin M production occurred in peritoneal B-1 cells but not in splenic B-2 cells. LPS stimulated peritoneal B-1 cells secreted IgM at day 1, but splenic B-2 cells at day 2. In thymidine incorporation, peritoneal B-1 cells entered actively S phase after 24hours LPS-stimulation but splenic B-2 cells entered actively S phase after 48 hours. Conclusion: IgM secretion and S phase entering occurred early in peritoneal B-1 cells compared to splenic B-2 cells.

Low Complexity FMCW Surveillance Radar Algorithm Using Phase Difference of Dual Chirps (듀얼첩간 위상차이를 이용한 저복잡도 FMCW 감시 레이더 알고리즘)

  • Jin, YoungSeok;Hyun, Eugin;Kim, Sangdong;Kim, Bong-seok;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.71-77
    • /
    • 2017
  • This paper proposes a low complexity frequency modulated continuous wave (FMCW) surveillance radar algorithm. In the conventional surveillance radar systems, the two dimensional (2D) fast Fourier transform (FFT) method is usually employed in order to detect the distance and velocity of the targets. However, in a surveillance radar systems, it is more important to immediately detect the presence or absence of the targets, rather than accurately detecting the distance or speed information of the target. In the proposed algorithm, in order to immediately detect the presence or absence of targets, 1D FFT is performed on the first and M-th bit signals among a total of M beat signals and then a phase change between two FFT outputs is observed. The range of target is estimated only when the phase change occurs. By doing so, the proposed algorithm achieves a significantly lower complexity compared to the conventional surveillance scheme using 2D FFT. In addition, show in order to verify the performance of the proposed algorithm, the simulation and the experiment results are performed using 24GHz FMCW radar module.

Phase boundary estimation with effective initial guess in electrical impedance tomography (전기 임피던스 단층촬영 기법에서 효과적인 초기치 설정을 통한 상 경계 추정)

  • Kim, Bong-Seok;Kim, Sin;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.211-216
    • /
    • 2012
  • In the phase boundary estimation problem, the estimation performance depends on the initial guess. However, there is no information on the number of bubbles and those positions for the initial guess in real flows. Therefore, it is very important to set appropriate initial guesses from prior information. In this paper, in order to set initial guesses for estimating the phase boundaries in two-phase flows, first, unknown resistivity distribution was estimated using the difference reconstruction method. After that, an adaptive threshold value was automatically computed using intermodes method. Based on this value, the number of bubbles and the initial position were determined. The numerical experiments have been performed to evaluate the estimation performance of the proposed method.

A Kinetic Analysis of the Side Propulsion Task with Preparatory Motions (사전 동작을 이용한 좌우 추진 과제의 운동역학적 분석)

  • Kim, Yong-Woon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2007
  • The purpose of this study was to find the most effective movement pattern from three different types of preparatory movement(squat, countermovement and hopping) in sideward responsive propulsion task, which had the time constraint to complete the performance. 7 healthy subjects participated in left and right side movement task by an external signal, which required the subject to perform the task as fast as possible. Mechanical output and joint kinetics focusing on the lower extremities were analyzed. The results were as follows. In spite of the shortest duration in propulsive phase, the hopping condition showed no difference with other conditions in the work output done and take-off velocity. It resulted from the greatest power output generated during the propulsive phase. A significant difference was found for joint moment and joint power according to the movement conditions. The joint moment and joint power for the countermovement and hopping conditions were larger than those in the squat condition. This was speculated to be due to the extra power that could be generated by the pre-stretch of muscle in preparation for the propulsion. The hopping condition which had substantially more pre-stretch load in the preparatory eccentric phase produced considerably more power than countermovement condition in the propulsive concentric phase. Furthermore during the hopping a large amount of joint moment and joint power could be produced in a shorter time. Therefore it was deemed that the hopping movement is an effective type of preparatory movement which takes much more advantage of the pre-stretch than any other movement.

Elasticity and Viscosity Control of an Ultrasonic Motor by a Phase Difference Control (초음파 모터의 위상차 조절에 의한 점탄성 제어)

  • 우수용;이권현;오금곤;정헌상;김영동
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.5
    • /
    • pp.86-92
    • /
    • 1997
  • An ultrasonic motor(USM) has good characteristics such as compact size, silent motion, high speed responce, low speed and high torque. The USM is driven by 2-phase AC electricity. The control parameters of USM are voltage, phase, and frequency of input powers, etc. In this paper, the fine elasticity and viscosity control with no force feedback can be implemented by a phase difference parameter. Experiment results show the change of torque with regard to elasticity and viscosity. Therefore the USM can be used as a micro-actuator in the automation field of the installation.

  • PDF

Difference of Decisional Balance and Confidence in the Stage of Adoption for Breast Self Exam in Married Women (유방자가검진 행위단계에 따른 의사결정균형과 확신성 비교연구)

  • Hur, Hea Kung;Park, So Mi
    • Korean Journal of Adult Nursing
    • /
    • v.16 no.3
    • /
    • pp.493-501
    • /
    • 2004
  • Purpose: The purpose of this study was 1) to classify the stage of adoption 2) to compare the decisional balance and confidence by stage of adoption 3) to identify factors influenced the stage of adoption for breast self exam. Method: A comparative study using a survey method with convenience sample of 143 women was used. Decisional balance and confidence was measured using the CHBMS-K. Stage of adoption for BSE was measured by a single item modified by the researchers based on the Rakowski et al (1992). Result: 1) The number of women in each stage of adoption for BSE was as follows; maintenance phase, 7.7% (n=11), action phase, 49.0% (n=70), contemplation phase, 35.0% (n=50) and pre- contemplation phase, 8.4%(n=12). 2) The mean difference in the decisional balance (F=4.32, p=.006) and confidence (F=13.85, p=.000) according to the stage of BSE adoption was statistically significant. 3) Prevention education and confidence accounted for 32% of variance in BSE. Conclusion: Assessment of decisional balance and stage of adoption for BSE can guide planning for cancer prevention education. We must educate women to have confidence in BSE. Further, it is important to urge women to continually practice BSE.

  • PDF

Effects of Visual Information on Joint Angular Velocity of Trunk and Lower Extremities in Sitting and Squat Motion

  • Bu, Kyoung hee;Oh, Tae young
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.89-95
    • /
    • 2015
  • Purpose: The purpose of this study is to determine the effects of visual information on movement time and each angular velocity of trunk and lower extremity joints while healthy adults are in sitting and squat motion. Methods: Participants consisted of 20 healthy male and female adults; movement time and each angular velocity of trunk, pelvis, hip, knee and ankle of sitting and squat motion according to common vision, visual task and visual block were analyzed using a three dimensional motion analysis system. Results: Each angular velocity of the trunk, pelvis, hip, knee and ankle in phase 2 of the sitting showed significant difference according to the types of visual information (p<0.05). Movement time and each angular velocity of pelvis and hip in phase 2 of squat motion showed significant difference according to the types of visual information (p<0.05). According to the common vision, each angular velocity of knee and ankle in phase 1 was significantly fast in sitting (p<0.05). According to the common vision, each angular velocity of trunk, pelvis, hip, knee, and ankle in phase 2 was significantly fast in sitting (p<0.05). Conclusion: Visual information affects the angular velocity of the motion in a simple action such as sitting, and that in more complicated squat motion affects both the angular velocity and the movement time. In addition, according to the common vision, visual task and visual block, as angular velocities of all joints were faster in sitting than squat motion.

Analysis of the Acoustic Radiation Efficiency on Multi-excitation System with Different Phase (위상차를 갖는 다중 가진 시 구조물의 방사효율 특성 해석)

  • Kang, Myunghwan;Yi, Jongju;Han, Seungjin;Bae, Sooryong;Jung, Woojin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.992-998
    • /
    • 2014
  • Acoustic radiation efficiency is one of the important factors in the prediction of underwater radiated noise of ships. A ship has much equipment to operate successful mission in a ship. Most of equipment is running simultaneously as multi-excitation and becomes the source of underwater radiated noise. In many cases of multi-excitation, phase difference between multi-excitation is not considered. Because vibration response under multi-excitation is the vector sum of each single excitation, acoustic radiation efficiency based on surface velocity field can be affected by phase of excitation. In this study, acoustic radiation efficiency of a plate on air and a stiffened cylindrical model in water under multi-excitation with phase difference is investigated.

The Comparison of Characteristics of Trunk Motion between Energy Walking and Normal Walking (에너지보행과 일반보행에서 몸통운동의 특성 비교)

  • Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.133-145
    • /
    • 2007
  • The purpose of this paper was to compare of difference between energy walking and normal walking. Subjects were selected 8 male undergraduates. The kinematic variables of a pelvis and a thorax were analysed at the take off and contact with 3d cinematography. In addition to the variables, the phase plot angle was calculated in order to definite characteristics in the phase space. The pelvic angle and angular velocity showed significant differences in the flexion/extension between two walking patterns. The pelvic angle and angular velocity were increasing when walking speed was increasing and magnitude of the variables of energy walking was larger than corresponding values for normal walking. On the other hand, the thoracic angle demonstrated significant differences in the flexion/extension and rotation between two walking patterns. The angles of energy walking were smaller in the flexion/extension and were larger in the rotation than the angle of normal walking. The kinematic characteristics of energy walking were also showed clearly significant differences in the range of motion and the relative angle of the trunk. The angle of phase plot only showed demonstrated a significant difference in the rotation at contact between the two walking patterns.

Comparison of Accuracy and Output Waveform of Devices According to Rectification Method (정류방식에 따른 장치의 정확도와 출력 파형의 비교)

  • Lee, In Ja
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.603-610
    • /
    • 2018
  • This study examined the following: accuracy of the exposure conditions in the inverter device and three-phase device; output waveform over the exposure conditions; and average and standard deviation of the output waveform. After assessing whether the dose corresponding to the theoretical dose was presented, the following conclusions were obtained: 1. The accuracy of the tube voltage(kVp) and tube current(mA) exposure time(sec) was within the tolerable level prescribed in Korea's Safety Management Standards. In the error, Inverter device was large the tube voltage and exposure time, the three-phase device was large the tube current. 2. In terms of the output waveform of the exposure conditions and the average and standard deviation of the output waveform, the higher tube voltage and larger tube current resulted in greater standard deviation in pulsation. Moreover, the standard deviation of pulsation was shown to be greater in the inverter device than the three-phase device; there was also greater standard deviation in the inverter device considering the exposure time. 3. Regarding the exposure conditions over the output dose, all linearity showed the coefficient of variation which had an allowable limit of error within 0.05. Although the output dose ratio for the inverter device was 1.00~1.10 times no difference that of the three-phase device, there was almost no difference in dose ratio between the tube currents.