• Title/Summary/Keyword: phase control

Search Result 7,247, Processing Time 0.041 seconds

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

Hybrid Phase Excitation Method for Improving Efficiency of 7-Phase BLDC Motors for Ship Propulsion Systems

  • Park, Hyung-Seok;Park, Sang-Woo;Kim, Dong-Youn;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.761-770
    • /
    • 2019
  • This paper proposes a hybrid phase windings excitation method for improving the efficiency of a 7-phase brushless DC (BLDC) motor in the electric propulsion system of a ship. The electrical losses of a BLDC motor system depend on the operating region and the number of excited phase windings (2-phase, 4-phase or general 6-phase windings). In this paper the operating region and torque/speed characteristics according to the motor rotation speed and propeller load are analyzed for a number of excitation methods. In addition, it analyzes the electrical losses of the system under each of the excitation methods in the entire operating region of the motor. In every sampling time, the proposed control method calculates the electrical loss of the system for each of the excitation methods and operates a 7-phase BLDC motor by selecting the excitation method that results a decreased electrical loss at the operating speed. The usefulness of the proposed control algorithm is verified through experimental results.

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.

Walking Control Using Phase Plane of a Hydraulic Biped Humanoid Robot (위상평면을 이용한 유압식 이족 휴머노이드 로봇의 보행제어)

  • Choi, Dong-Il;Kim, Jung-Hoon;Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.269-276
    • /
    • 2011
  • This paper proposes a novel control method using phase plane for a hydraulic biped humanoid robot. In biped walking control, it is much more difficult to control the posture of a biped robot in the coronal plane because the supporting area formed by the both feet in the coronal plane is much narrower than that of the sagittal plane. When the biped robot walks stably, the phase portrait of the pelvis in the coronal plane makes an elliptical shape. From this point of view, we develop an ankle torque controller and a foot placement controller for tracking the desired phase portrait during walking. We design these controllers by using simulations of a simplified compass gait biped model to regulate the desired phase portrait of pelvis. The effectiveness of the proposed control method is proved through full-body dynamic walking simulations and real experiments of the SARCOS hydraulic biped humanoid.

Adaptation of Space Vector Modulation to Single-Phase High Power PWM Converters (단상 PWM 컨버터에 적용한 공간 벡터 PWM)

  • Lee, Hee-Myun;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.442-443
    • /
    • 2011
  • In this paper, a voltage control method based on DQ transformation and Space Vector Pulse Width Modulation (SVPWM) for a single phase three-level converter is proposed. This control method is designed to use DC values instead of using instantaneous values of current which are usually used in single-phase application, so that it results in a fast and robust voltage control response. Simulation results demonstrate the validity of the control strategies.

  • PDF

Torque Control Scheme of Switched Reluctance Motor using Neural Network (신경회로망을 이용한 SRM의 토오크 제어)

  • 정연석;이장선;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.171-174
    • /
    • 1999
  • The torque of SRM is developed by phase currents and inductance variation. Phase currents and inductance variation. Phase current is often the controlled variable in electrical motor drives, so it seems natural to use closed loop current controllers. However, the highly nonlinear nature of switched reluctance motors makes optimisation of closed loop current controlled difficult because of saturation effect in magnetic circuit. Therefore, torque generation region is nonlinearly varied according to phase current and rotor position. This paper describes the torque control scheme with neural network that can control varied with load torque. The torque control is simulated by PSIM.

  • PDF

Power Assist Control for Walking Aid by HAL Based on Phase Sequence and EMG

  • Lee, Suwoong;Yoshiyuki Sankai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.1-46
    • /
    • 2001
  • This paper describes a control method of hybrid power assistive system for lower body, HAL, with the techniques of Phase Sequence and the application of EMG. Our objective is to attain the power assist control of motion in the lower body effectively with these two methods. The Phase Sequence which performs basic motion controls of HAL is the method that a motion, the Task, is accomplished by dividing each motion into the unit named Phase and ...

  • PDF

A Study on Nonlinear Control Strategy for Three-phase Voltage Source PWM DC/AC Inverter based on the PCH Model

  • Mu, Xiaobin;Wang, Jiuhe;Bao, Xueyu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • The mathematical model of a three-phase voltage source pulse-width modulation (PWM) DC/AC inverter is non-linear, and in view of the traditional linear control strategy it can not meet the requirements of designing a high-performance inverter. What's more, when the loads are not pure resistive loads, the inverter further requires that the controller possess high-performance. This paper proposes a nonlinear control strategy for the inverter called Passivity-based Control. We can alter the inverter model in three-phase abc coordinate to two-phase synchronous rotating dq coordinate for establishing the port-control Hamiltonian (PCH) model for this system. We can control the distribution of energy in the system to achieve the control aim. Simulation results show that the passivity-based control method can make this system possess a level of high-performance that is both robust and dynamic.

The phase angle driving adaptive control of single-induction motor using one-chip micro controller (원칩 마이컴을 이용한 단상유도전동기의 위상각 구동 적응제어)

  • 이형상;김정도;김이경;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.675-679
    • /
    • 1992
  • In industry, the speed control of single-phase induction motor in domestic use is generally controlled by a simple ON-OFF or PID control method. However, in this case, in order to have a good speed regulating characteristics, itself should be modified in accordance with the optimum PID factors which are varied each time operating speed changes. Shortening the development time and saving the cost which are needed to modify the controller is a major problem to be solved now in industry. In order to alleviate the above difficulties, it is proposed to apply adaptive control technique using MRFAC(Model Reference Following Adaptive Control) for the speed control of single-phase induction motor which has scarcely been studied. In this paper, the above speed control technique is achieved using MCS-96 one chip micro controller with a good speed control characteristics and it is expetted to open a wide application field in the speed control of single-phase induction motor in the future.

  • PDF

Output Voltage Control in a Serise Multilevel H-bridge Inverter with SHE-PWM Method (직렬 멀티레벨 H-bridge inverter에서 SHE-PWM방식을 사용한 출력 전 압의 제어)

  • Kim J.Y.;Jeong S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.1-4
    • /
    • 2003
  • This paper proposes a method of voltage control for three-phase multilevel H-bridge inverters with selective harmonic elimination (SHE) PWM The full-bridge configuration of H-bridge inverter cells enables voltage control with a fixed PWM pattern by means of phase shifting between the legs, which greatly simplifies the control while maintaining the harmonic elimination characteristics. The series combination of the cells in multilevel configuration can be exploited to further improve the hormonic elimination characteristics with proper phase shifting between the ceil volitage. A complexor-based control method is introduced to control the magnitude and phase angle of cell voltages that form three-phase multilevel output voltages. Simulation results show that the proposed method along with SHE PWM would provide satisfactory performance in spite of its simplicity.

  • PDF