• Title/Summary/Keyword: phase behavior

Search Result 2,971, Processing Time 0.03 seconds

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Concept Analysis of Health Insensitivity using Hybrid Model (Hybrid model을 이용한 건강불감증의 개념분석)

  • 이동숙;이은옥
    • Korean Journal of Health Education and Promotion
    • /
    • v.20 no.3
    • /
    • pp.145-170
    • /
    • 2003
  • The purpose of this study was to clarity the concept of health insensitivity using Hybrid model, which consists of three phases: theoretical, empirical, and analytic. In the theoretical phase, the definitions of health insensitivity were searched in korean dictionary and examples used in the websites because the concept of health insensitivity has never been studied before. Two dimensions of health insensitivity emerged out from this investigation were cognitive and behavioral. And then a working definition of health insensitivity was established. The sub-concepts and related factors of health insensitivity were identified through the extensive reviews of the literature focusing on two dimensions of cognitive and behavioral. In the empirical phase, in order to obtain description of health insensitivity, face-to-face in-depth interviews were conducted with nine persons who are not related to professional health care. Grounded theory approach was applied to analyze these qualitative data. In the final analytic phase, theoretical results and empirical results were analyzed in the integrated way and a theoretical framework of health insensitivity was established. A refined definition of health insensitivity was that decreased health risk perception in cognitive dimension and conduction of the unhealthy behaviors in behavioral dimension. Sub-concepts of decreased health risk perception were optimistic bias and decreased general fear. Sub-concepts of unhealthy behavior were doing health threatening behavior and not doing desirable health behavior. The contact of health information was a causal condition of health insensitivity. Optimistic disposition, health locus of control, and avoidance coping style were intervening conditions of health insensitivity. Three types of health insensitivity were identified: unconcern or ignorance type, optimistic bias type, and cognitive dissonance type. Finally, The implications of these findings for further research and nursing practice are discussed.

A Study on the Fast-firing Body with Natural Wollastoitne (천연 규회석을 이용한 신속소성소지 구성에 관한 연구)

  • 안영필;최의석;김복희
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 1982
  • As raw materials wollastonite, kaolin and pyrophyllite were used to synthesize mullite, anorthite and pseudowoll-astonite which were known as low thermal expansion substance. Increasing the amount of wollastonite in the composition resulted in a linear thermal expansion behavior. However, the increases of pyrophyllite indicated the relatively unstable themmal expansion behavior, because the phase transition occured in quartz of the pyrophyllite compositon. To lowering sintering temperature feldspar (Kebook and Anyang) were added in the composition that showed the linear thermal expantion behavior, and over 50'C were lowered.

  • PDF

Hot Deformation Behavior of Presintered Steel Powder Preforms (예비소결된 철계분말 preform의 고온변형거동)

  • Lee, Gang-Ryul;Seo, Sang-Gi
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.53-60
    • /
    • 1989
  • Hot upsetting experiments were carried out on presintered steel powder preforms in the temperature range 700- $950^{\circ}C$ to examine the hot deformation behavior. Following conclusions were drawn on the basis of the present study. -The flow stress during hot deformation is directly related to $\alpha$- $\gamma$ phase trasformation - The flow stress of ferrite is lower than that of austenite in the moderate temperature range 800- $900^{\circ}C$ for most alloys used in the present study - Major restoration behavior during hot deformation in the ferrite range is dynamic recovery.

  • PDF

Experimental Investigation of Flow Oscillations in a Semi-closed Two-phase Natural Circulation Loop (준밀폐형 2상자연순환 회로 내에서의 유동 진동에 관한 실험적 연구)

  • Kim, Jong Moon;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1763-1773
    • /
    • 1998
  • In the present experimental study, the flow behavior in a semi-closed two-phase natural circulation loop was examined. Water was used as the working fluid. Heat flux, heater-inlet subcooling, and flow restrictions at the heater-inlet and at the expansion-tank-line were taken as the controlling parameters Six circulation modes were identified by changing heat flux and inlet subcooling conditions ; single-phase continuous circulation, periodic circulation (A), two-phase continuous circulation, and periodic circulations (B), (C), and (D). Among these, the single-phase and two-phase continuous-circulation modes exhibit no significant oscillations and are considered to be stable. Periodic circulation (A) is characterized by the large amplitude two-phase f10w oscillations with the temporal single-phase circulation between them, while periodic circulation (B) featured by the flow oscillations with continuous boiling inside the heater section. Periodic circulation (C) appears to be the manometric oscillation with continuous boiling. Periodic circulation (D) has the longer period than periodic circulation (B) and a substantial amount of liquid flow back and forth through the expansion-tank-line periodically ; this mode is considered the pressure drop oscillation. Parametric study shows that the increases of the inlet- and expansion-tank-line- restrictions and the decrease of inlet subcooling broaden the range of the stable two-phase(continuous circulation) mode.