• 제목/요약/키워드: pharmaceutical residues

Search Result 153, Processing Time 0.027 seconds

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

사람 티로시나제의 3차원 구조 상동 모델링 (Comparative modeling of human tyrosinase - An important target for developing skin whitening agents)

  • 최종근;서주원
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2012년도 춘계학술논문집 1부
    • /
    • pp.182-186
    • /
    • 2012
  • human tyrosinase (hTyr) catalyzes first and the rate limiting step in the synthesis of polymerized pigment, melanin which determines skin, hair and eye colors. Mutation of hTyr often brings about decrease of melanin production and further albinism. Meanwhile, a number of cosmetic companies providing skincare products for woman in Asia-Pacific region have tried to develop inhibitors to bright skin color for several decades. In this study, we built a 3D structure by comparative modeling technique based on the crystal structure of tyrosinase from bacillus megaterium as a template to serve structural information of hTyr. According to our model and sequence analysis of type 3 copper protein family proteins, two copper atoms of active site located deep inside are coordinated with six strictly conserved histidine residues coming from four-helix-bundle. Cavity which accommodates substrates was like funnel shape of which entrance was wide and expose to solvent. In addition, protein-substrate and protein-inhibitor complex were modeled with the guide of van der waals surface generated by in house software. Our model suggested that only phenol group or its analogs can fill the binding site near nuclear copper center because inside of binding site has narrow shape relatively. In conclusion, the results of this study may provide helpful information for designing and screening new anti-melanogensis agents.

  • PDF

Wewakamide A and Guineamide G, Cyclic Depsipeptides from the Marine Cyanobacteria Lyngbya semiplena and Lyngbya majuscula

  • Han, Bingnan;Gross, Harald;Mcphail, Kerry L.;Goeger, Doug;Maier, Claudia S.;Gerwick, William H.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.930-936
    • /
    • 2011
  • Two new cyclic depsipeptides wewakamide A (1) and guineamide G (2) have been isolated from the marine cyanobacterium Lyngbya semiplena and Lyngbya majuscula, respectively, collected from Papua New Guinea. The amino and hydroxy acid partial structures of wewakamide A and guineamide G were elucidated through extensive spectroscopic techniques, including HR-FABMS, 1D $^1H$ and $^{13}C$ NMR, as well as 2D COSY, HSQC, HSQC-TOCSY, and HMBC spectra. The sequence of the residues of wewakamide A was determined through a combination of ESI-MS/MS, HMBC, and ROESY. Wewakamide A possesses a ${\beta}$-amino acid, 3-amino-2-methylbutanoic acid (Maba) residue, which has only been previously identified in two natural products, guineamide B (3) and dolastatin D (4). Although both new compounds (1,2) showed potent brine shrimp toxicity, only guineamide G displayed significant cytotoxicity to a mouse neuroblastoma cell line with $LC_{50}$ values of 2.7 ${\mu}M$.

An Essential Histidine Residue in the Catalytic Mechanism of the Rat Kidney γ-Glutamyl Transpeptidase

  • Kim, Soo-Ja;Ko, Moon-Kyu;Chai, Kyu-Yun;Cho, Seong-Wan;Lee, Woo-Yiel
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.271-275
    • /
    • 2007
  • γ -Glutamyl transpeptidase (EC 2.3.2.2) plays a key role in glutathione metabolism by catalyzing the transfer of the γ -glutamyl residue and hydrolysis of glutathione. The functional residues at the active site of the rat kidney γ -glutamyl transpeptidase were investigated by kinetic studies at various pH, the treatment of diethylpyrocarbonate (DEPC), and photooxidation in presence of methylene blue. An ionizable group affecting the enzymatic activity with an apparent pKa value of 7.1, which is in the range of pKa values for a histidine residue in protein, was obtained by examining the pH-dependence of kinetic parameters. The pH effect on the photoinduced inactivation rate of the enzyme corresponds to that expected for the photooxidation of the free histidine. The involvement of a histidine in the catalytic site of the enzyme was further supported by DEPC modification accompanied by an increase in absorbance at 240 nm, indicating the formation of Ncarbethoxyhistidine. The histidine located at the position of 382 in the precursor of the enzyme is primarily suspected based on the amino acid sequence alignment of the transpeptidases from various organisms.

Construction of Novel Bifunctional Chimeric Proteins Possessing Antitumor and Thrombolytic Activities

  • Hui, Jing;Dai, Youjin;Bian, Yuanyuan;Li, Hui;Cui, Xiaojin;Yu, Xiaojie;You, Song;Hu, Fengqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.894-901
    • /
    • 2012
  • Based on their respective antitumor and thrombolytic activities, the superantigen staphylococcal enterotoxin C2 (SEC2) and staphylokinase (Sak) were chosen for the construction of the novel chimeric proteins Sak-linker-SEC2 and SEC2-linker-Sak using a linker composed of nine Ala residues. Both chimeric proteins possessed nearly the same PBMC proliferation stimulating activity and antitumor activity as SEC2 and thrombolytic activity as Sak. Neither the SEC2 or Sak component of each chimeric protein affected the activity of the other component. The results presented in this study provide a possible strategy to prevent and cure tumor thrombus.

Backbone assignment of HMGB1 A-box and molecular interaction with Hoxc9DBD studied by paramagnetic probe

  • Choi, Ji Woong;Park, Sung Jean
    • 한국자기공명학회논문지
    • /
    • 제25권2호
    • /
    • pp.17-23
    • /
    • 2021
  • High mobility group protein B1 (HMGB1) is a highly conserved, non-histone, chromatin associated nuclear protein encoded by HMGB1 gene. HMGB1 proteins may be general co-factors in Hox-mediated transcriptional activation that facilitate the access of Hox proteins to specific DNA targets. It is unclear that the exact binding interface of Hoxc9DBD and HMGB1. To identify the interface and binding affinity of Hoxc9DBD and HMGB1 A-box, the paramagnetic probe, MTSL was used in NMR titration experiment. It is attached to the N-terminal end of HMGB1 A-box by reaction with thiol groups. The backbone assignment of HMGB1 A-box was achieved with 3D NMR techinques. The 15N-labeled HMGB1 A-box was titrated with MTSL-labeled Hoxc9DBD respectively. Based on the chemical shift changes we can identify the interacting residues and further map out the binding sites on the protein structure. The NMR titration result showed that the binding interface of HMGB1 A-box is around loop-1 between helix-1 and helix-2. In addition, the additional contacts were found in N- and C-terminus. The N-terminal arm region of Hoxc9DBD is the major binding region and the loop between helix1 and helix2 is the minor binding region.

Localization of the Membrane Interaction Sites of Pal-like Protein, HI0381 of Haemophilus influenzae

  • Kang, Su-Jin;Park, Sung Jean;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.206-211
    • /
    • 2008
  • HI0381 of Haemophilus influenzae was investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. HI0381 is a 153-residue peptidoglycan-associated outer membrane lipoprotein, and a part of the larger Tol/Pal network. Here, we report its backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments, and secondary structure predictions. About 97% of all of the $^1HN$, $^{15}N$, $^{13}CO$, $^{13}C{\alpha}$, and $^{13}C{\beta}$ resonances covering 131 non-proline residues of the 134 residue, mature protein, were clarified by sequential and specific assignments. CSI and TALOS analyses revealed that HI0381 contains five ${\alpha}$-helices and five ${\beta}$-strands. To characterize the structure of HI0381, the effects of pH and salt concentration were investigated by CD. In addition, the structural changes occurring when HI0381 was in a membranous environment were investigated by comparing its HSQC spectra and CD data in buffer and in DPC micelles; the results showed that helix ${\alpha}4$ and strand ${\beta}4$ became aligned with the membrane. We conclude that the conformation of HI0381 is affected by the membrane environment, implying that its folded state is directly related to its function.

Studies on the anti-inflammatory glycosides of panax ginseng

  • Han, Byung-Hoon;Han, Yong-Nam;Woo, Lin-Keun
    • 약학회지
    • /
    • 제16권3호
    • /
    • pp.129-136
    • /
    • 1972
  • Two anti-infalmmatory glycosides, Panax saponin A, $C_{47}H_{72}O_{14}$ center dot $2H_{2}O$, m.p. $208-10^{\circ}$ and C, m.p. $196-202^{\circ}$, were isolated from the methanol extract of Panax ginseng. The anti-inflammatory activity of Panax saponin A was found to have delayed and prolonged characteristics. The partial structure of Panax saponin A was established to be ${\beta}{\betha}$'20S-protopanaxatriol-diglucoside. One of glucose residues was bound to the 20S-hydroxyl group of aglycone.

  • PDF

Isolation and Characterization of Epidermal Mucus from Hirudo nipponia

  • Lee, Ju-Yun;Joe, Cheol-O;Kang, Ke-Won
    • BMB Reports
    • /
    • 제29권3호
    • /
    • pp.248-252
    • /
    • 1996
  • The epidermal organ of the leech contains a complex glycoprotein molecule of mucus. The mucus excreted from annelids plays Significant role in protection against desiccation and parasites. Mucus from the Korean native leech, H. nipponia, was investigated for biochemical characteristics for possible development of biomaterials of cosmetic and pharmaceutical agents. The leech skin mucus was heavily glycosylated mucin-like protein with a high molecular weight comprised 80% carbohydrate and 20% protein. Threonine, serine, and glycine were the major components of the isolated protein and these accounted for 50% of total amino acids. The carbohydrate portion contained glucosamine, galactosamine. galactose, glucose. mannose and sialic acid in oligosaccharide form linked with threonine and serine residues of the glycoprotein.

  • PDF

High-Throughput Screening for Novel Inhibitors of Protein-Tyrosine Phosphatase-1B

  • Lee, In-Ki;Son, Mi-Won;Jung, Mi-Young;Shin, Chang-Yell;Kim, Dong-Sung;Kim, Soon-Hoe;Yoo, Moo-Hi;Kim, Won-Bae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.243.2-244
    • /
    • 2002
  • Protein-tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic enzymes. which catalyze the dephosphorylation of phosphotyrosine residues in a variety of receptors and signaling molecules. Thirty subtypes of PTPs have been identified in human genomes. Among PTPs, PTP1 B has been suggested as a negative regulator of insulin signaling. Overexpression of this enzyme has been known as a cause of obesity and type II diabetes, so it is a target for drug discovery. (omitted)

  • PDF