• Title/Summary/Keyword: phantom

Search Result 2,248, Processing Time 0.022 seconds

Comparison of Three Different Helmet Bolus Device for Total Scalp Irradiation (Total Scalp의 방사선 치료 시 Helmet Bolus 제작방법에 관한 연구)

  • Song, Yong-Min;Kim, Jong-Sik;Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young;Park, Su-Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Purpose: This study evaluated the usefulness of Helmet bolus device using Bolx-II, paraffin wax, solid thermoplastic material in total scalp irradiation. Materials and Methods: Using Rando phantom, we applied Bolx-II (Action Products, USA), paraffin wax (Densply, USA), solid thermoplastic material (Med-Tec, USA) on the whole scalp to make helmet bolus device. Computed tomography (GE, Ultra Light Speed16) images were acquired at 5 mm thickness. Then, we set up the optimum treatment plan and analyzed the variation in density of each bolus (Philips, Pinnacle). To evaluate the dose distribution, Dose-homogeneity index (DHI, $D_{90}/D_{10}$) and Conformity index (CI, $V_{95}/TV$) of Clinical Target Volume (CTV) using Dose-Volume Histogram (DVH) and $V_{20}$, $V_{30}$ of normal brain tissues. we assessed the efficiency of production process by measuring total time taken to produce. Thermoluminescent dosimeters (TLD) were used to verify the accuracy. Results: Density variation value of Bolx-II, paraffin wax, solid thermoplastic material turned out to be $0.952{\pm}0.13g/cm^3$, $0.842{\pm}0.17g/cm^3$, $0.908{\pm}0.24g/cm^3$, respectively. The DHI and CI of each helmet bolus device which used Bolx-II, paraffin wax, solid thermoplastic material were 0.89, 0.85, 0.77 and 0.86, 0.78, 0.74, respectively. The result of Bolx-II was the best. $V_{20}$ and $V_{30}$ of brain tissues were 11.50%, 10.80%, 10.07% and 7.62%, 7.40%, 7.31%, respectively. It took 30, 120, 90 minutes to produce. The measured TLD results were within ${\pm}7%$ of the planned values. Conclusion: The application of helmet bolus which used Bolx-II during total scalp irradiation not only improves homogeneity and conformity of Clinical Target Volume but also takes short time and the production method is simple. Thus, the helmet bolus which used Bolx-II is considered to be useful for the clinical trials.

  • PDF

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF

Manufacture of Daily Check Device and Efficiency Evaluation for Daily Q.A (일일 정도관리를 위한 Daily Check Device의 제작 및 효율성 평가)

  • Kim Chan-Yong;Jae Young-Wan;Park Heung-Deuk;Lee Jae-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Purpose : Daily Q.A is the important step which must be preceded in a radiation treatment. Specially, radiation output measurement and laser alignment, SSD indicator related to a patient set-up recurrence must be confirmed for a reasonable radiation treatment. Daily Q.A proceeds correctness and a prompt way, and needs an objective measurement basis. Manufacture of the device which can facilitate confirmation of output measurement and appliances check at one time was requested. Materials and Methods : Produced the phantom formal daily check device which can confirm a lot of appliances check (output measurement and laser alignment. field size, SSD indicator) with one time of set up at a time, and measurement observed a linear accelerator (4 machine) for four months and evaluated efficiency. Results : We were able to confirm an laser alignment, field size, SSD indicator check at the same time, and out put measurement was possible with the same set up, so daily Q.A time was reduced, and we were able to confirm an objective basis about each item measurement. As a result of having measured for four months, output measurement within ${\pm}2%$, and measured laser alignment, field size, SSD indicator in range within ${\pm}1mm$. Conclusion : We can enforce output measurement and appliances check conveniently, and time was reduced and was able to raise efficiency of business. We were able to bring a cost reduction by substitution expensive commercialized equipment. Further It is necessary to makes a product as strong and slight materials, and improve convenience of use.

  • PDF

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Choi Dong-Rak;Shin Kyung Hwan;Lee Kyu Chan;Kim Dae Yong;Ahn Yong Chan;Lim Do Hoon;Kim Moon Kyun;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.78-83
    • /
    • 1999
  • Purpose : We have compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. Materials and Methods : We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60$^{\circ}$) using 6- and 15MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15cm${\times}$20cm radiation field size at the depth of loom. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15cm H20cm and a polystyrene phantom was used. Results : For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%) , respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5$^{\circ}$ . Suface dose with physical wedge was reduced by maximum 20% (x-ray beam :6 MV, wedge angle:45$^{\circ}$, 550: 80 cm) relative to one with virtual wedge or without wedge. Conclusions : Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using physical wedge.

  • PDF

Evaluation of a Water-based Bolus Device for Radiotherapy to the Extremities in Kaposi's Sarcoma Patients (사지에 발병한 카포시육종의 방사선치료를 위한 물볼루스 기구의 유용성 고찰)

  • Ahn, Seung-Kwon;Kim, Yong-Bae;Lee, Ik-Jae;Song, Tae-Soo;Son, Dong-Min;Jang, Yung-Jae;Cho, Jung-Hee;Kim, Joo-Ho;Kim, Dong-Wook;Cho, Jae-Ho;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Purpose: We designed a water-based bolus device for radiation therapy in Kaposi's sarcoma. This study evaluated the usefulness of this new device and compared it with the currently used rice-based bolus. Materials and Methods: We fashioned a polystyrene box and cut a hole in order to insert patient's extremities while the patient was in the supine position. We used a vacuum-vinyl based polymer to reduce water leakage. Next, we eliminated air using a vacuum pump and a vacuum valve to reduce the air gap between the water and extremities in the vacuum-vinyl box. We performed CT scans to evaluate the density difference of the fabricated water-based bolus device when the device in which the rice-based bolus was placed directly, the rice-based bolus with polymer-vinyl packed rice, and the water were all put in. We analyzed the density change with the air gap volume using a planning system. In addition, we measured the homogeneity and dose in the low-extremities phantom, attached to six TLD, and wrapped film exposed in parallel-opposite fields with the LINAC under the same conditions as the set-up of the CT-simulator. Results: The density value of the rice-based bolus with the rice put in directly was 14% lower than that of the water-based bolus. Moreover, the value of the other experiments in the rice-based bolus with the polymer-vinyl packed rice showed an 18% reduction in density. The analysis of the EDR2 film revealed that the water-based bolus shows a more homogeneous dose plan, which was superior by $4{\sim}4.4%$ to the rice-base bolus. The mean TLD readings of the rice-based bolus, with the rice put directly into the polystyrene box had a 3.4% higher density value. Moreover, the density value in the case of the rice-based bolus with polymer-vinyl packed rice had a 4.3% higher reading compared to the water-based bolus. Conclusion: Our custom-made water-based bolus device increases the accuracy of the set-up by confirming the treatment field. It also improves the accuracy of the therapy owing to the reduction of the air gap using a vacuum pump and a vacuum valve. This set-up represents a promising alternative device for delivering a homogenous dose to the target volume.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

Quality Assurance of Volumetric Modulated Arc Therapy for Elekta Synergy (Elekta Synergy 선형가속기를 이용한 입체적세기조절회전방사선치료(VMAT) 정도관리)

  • Shim, Su-Jung;Shim, Jang-Bo;Lee, Sang-Hoon;Min, Chul-Kee;Cho, Kwang-Hwan;Shin, Dong-Oh;Choi, Jin-Ho;Park, Sung-Ill;Cho, Sam-Ju
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.33-41
    • /
    • 2012
  • For applying the quality assurance (QA) of volumetric modulated arc therapy (VMAT) introduced in Eulji Hospital, we classify it into three different QA steps, treatment planning QA, pretreatment delivering QA, and treatment verifying QA. These steps are based on the existing intensity modulated radiation therapy (IMRT) QA that is currently used in our hospital. In each QA step, the evaluated items that are from QA program are configured and documented. In this study, QA program is not only applied to actual patient treatment, but also evaluated to establish a reference of clinical acceptance in pretreatment delivering QA. As a result, the confidence limits (CLs) in the measurements for the high-dose and low-dose regions are similar to the conventional IMRT level, and the clinical acceptance references in our hospital are determined to be 3 to 5% for the high-dose and the low-dose regions, respectively. Due to the characteristics of VMAT, evaluation of the intensity map was carried out using an ArcCheck device that was able to measure the intensity map in all directions, $360^{\circ}$. With a couple of dosimetric devices, the gamma index was evaluated and analyzed. The results were similar to the result of individual intensity maps in IMRT. Mapcheck, which is a 2-dimensional (2D) array device, was used to display the isodose distributions and gave very excellent local CL results. Thus, in our hospital, the acceptance references used in practical clinical application for the intensity maps of $360^{\circ}$ directions and the coronal isodose distributions were determined to be 93% and 95%, respectively. To reduce arbitrary uncertainties and system errors, we had to evaluate the local CLs by using a phantom and to cooperate with multiple organizations to participate in this evaluation. In addition, we had to evaluate the local CLs by dividing them into different sections about the patient treatment points in practical clinics.

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.

Effective Detective Quantum Efficiency (eDQE) Evaluation for the Influence of Focal Spot Size and Magnification on the Digital Radiography System (X-선관 초점 크기와 확대도에 따른 디지털 일반촬영 시스템의 유효검출양자효율 평가)

  • Kim, Ye-Seul;Park, Hye-Suk;Park, Su-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The magnification technique has recently become popular in bone radiography, mammography and other diagnostic examination. However, because of the finite size of X-ray focal spot, the magnification influences various imaging properties with resolution, noise and contrast. The purpose of study is to investigate the influence of magnification and focal spot size on digital imaging system using eDQE (effective detective quantum efficiency). Effective DQE is a metric reflecting overall system response including focal spot blur, magnification, scatter and grid response. The adult chest phantom employed in the Food and Drug Administration (FDA) was used to derive eDQE from eMTF (effective modulation transfer function), eNPS (effective noise power spectrum), scatter fraction and transmission fraction. According to results, spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.76, 2.21, 1.78, 1.49 and 1.26 lp/mm respectively using small focal spot. The spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.21, 1.66, 1.25, 0.93 and 0.73 lp/mm respectively using large focal spot. The eMTFs and eDQEs decreases with increasing magnification factor. Although there are no significant differences with focal spot size on eDQE (0), the eDQEs drops more sharply with large focal spot than small focal spot. The magnification imaging can enlarge the small size lesion and improve the contrast due to decrease of effective noise and scatter with air-gap effect. The enlargement of the image size can be helpful for visual detection of small image. However, focal spot blurring caused by finite size of focal spot shows more significant impact on spatial resolution than the improvement of other metrics resulted by magnification effect. Based on these results, appropriate magnification factor and focal spot size should be established to perform magnification imaging with digital radiography system.

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.