• Title/Summary/Keyword: phage library

검색결과 82건 처리시간 0.023초

Neutralizing Chimeric Mouse-human Antibodies against Burkholderia pseudomallei Protease: Expression, Purification and Characterization

  • Chan, Shzu-Wei;Ong, Guan-Im;Nathan, Sheila
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.556-564
    • /
    • 2004
  • A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2% glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.

Selection of Vaccinia Virus-Neutralizing Antibody from a Phage-Display Human-Antibody Library

  • Shin, Yong Won;Chang, Ki-Hwan;Hong, Gwang-Won;Yeo, Sang-Gu;Jee, Youngmee;Kim, Jong-Hyun;Oh, Myoung-don;Cho, Dong-Hyung;Kim, Se-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.651-657
    • /
    • 2019
  • Although smallpox was eradicated in 1980, it is still considered a potential agent of biowarfare and bioterrorism. Smallpox has the potential for high mortality rates along with a major public health impact, eventually causing public panic and social disruption. Passive administration of neutralizing monoclonal antibodies (mAbs) is an effective intervention for various adverse reactions caused by vaccination and the unpredictable nature of emerging and bioterrorist-related infections. Currently, vaccinia immune globulin (VIG) is manufactured from vaccinia vaccine-boosted plasma; however, this production method is not ideal because of its limited availability, low specific activity, and risk of contamination with blood-borne infectious agents. To overcome the limitations of VIG production from human plasma, we isolated two human single-chain variable fragments (scFvs), (SC34 and SC212), bound to vaccinia virus (VACV), from a scFv phage library constructed from the B cells of VACV vaccine-boosted volunteers. The scFvs were converted to human IgG1 (VC34 and VC212). These two anti-VACV mAbs were produced in Chinese Hamster Ovary (CHO) DG44 cells. The binding affinities of VC34 and VC212 were estimated by competition ELISA to $IC_{50}$ values of $2{\mu}g/ml$ (13.33 nM) and $22{\mu}g/ml$ (146.67 nM), respectively. Only the VC212 mAb was proven to neutralize the VACV, as evidenced by the plaque reduction neutralization test (PRNT) result with a $PRNT_{50}$ of ~0.16 mg/ml (${\sim}1.07{\mu}M$). This VC212 could serve as a valuable starting material for further development of VACV-neutralizing human immunoglobulin for a prophylactic measure against post-vaccination complications and for post-exposure treatment against smallpox.

The Characterization of Mitochondrial DNA of Korean Ginseng (Panax ginseng C.A. Meyer)

  • Lim, Yong-Pyo;Park, Kwang-Tae
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.168-174
    • /
    • 1990
  • This study was focused on the characterization of mitochondrial DNA (mtDNA) for molecular genetically approach of energy Production related mechanism in Panax Ein.fend. The simple and efficient method of mtDNA isolation from ginseng has been developed by modification of recently advanced methods. This procedure can successfully apply to mtDNA isolation of several plants. MtDNA of etiolated shoot and one-year root were digested with restriction endonucleases, but that of 6-year root not Any difference was not observed in the restriction endonuclease digestion patterns among the ginseng variants. Molecular size of ginseng mtDNA was estimated at least 159 kb by the restriction endonuclease fragment analysis. The 4.5 kb extra band at the lane of EcoRll treatment could be observed in restriction patterns digested with the methylation sensitive endonucleases, BstN 1 and EcoRll. For construction of mitochondrial genomic library of ginseng, mtDNA was partially digested with EcoRl, and packaged with EMBL4 phage vector Genomic library was screened and purified for further research including restricttion mapping of ginseng mtDNA, and cloning of the genes. The gene of ATP synthase A subunit was cloned koto the purified EMBL4 library clone No. 16. Now, clone No. 16 is subcloned for structure gene sequence analysis.

  • PDF

고려인삼의 미토콘드리아 DNA의 분자생물학적 특성연구 (The Characterization of Mitochondrial DNA of Korean Ginseng (Panax ginseng C.A. Meyer))

  • Lim, Yong-Pyo;Park, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.310-316
    • /
    • 1990
  • This study was focused on the characterization of mitochondrial DNA (mtDNA) for molecular 9enetical approach of energy Production related mechanism in Panax ginseng. The simple and efficient method of mtDNA isolation from ginseng has been developed by modification of recently advanced methods. This procedure can successfully apply to mtDNA isolation of several plants. mtDNA of etiolated shoot and one-year root were digested with restriction endonucleases, but that of 6-year root not. Any difference was not observed in the restriction endonuclease digestion patterns among the ginseng variants. Molecular size of ginseng mtDNA was estimated at least 159 kb by the restriction endonuclease fragment analysis. The 4.5 kb extra band at the lane of EcoRII treatment could be observed in restriction patterns digested with the methylation sensitive endonucleases, BstN I and EcoRII. For construction of mitochondrial genomic library of ginseng, mtDNA was partially digested with EcoRl, and packaged with EMBL4 phage vector. Genomic library was screened and purified for further research including restriction mapping of ginseng mtDNA, and cloning of the genes. The gene of ATP synthase A subunit was cloned from the purified EMBL4 library clone No. 16. Now, clone No. 16 is subcloned for structure gene sequence analysis.

  • PDF

파지디스플레이를 이용한 성장인자 안정화 제형 맞춤형 피부 투과 펩타이드의 개발 (Screening of Skin-permeable Peptide in Thermal Stabilizing Formulation Using Phage Display)

  • 이설훈
    • 한국미생물·생명공학회지
    • /
    • 제46권4호
    • /
    • pp.326-333
    • /
    • 2018
  • 본 연구에서는 성장인자, 효소, 펩타이드 등과 같은 기능성 생체 고분자를 대상으로 열에 대한 안정성 및 피부 투과성을 향상시키는 연구를 수행하였다. 이들은 생체 내에서 세포를 활성화 하거나 촉매 작용을 담당하고 있다. 따라서 화장품 등의 외용제에 적용 시, 그 효능의 우수함이 예상되나 열에 대한 불안정성과 높은 분자량으로 피부 투과성이 낮은 단점이 있다. 이를 극복하기 위해 먼저 열에 대한 안정성을 확보할 수 있는 조성을 탐색하였다. 그 결과, 단분자 구조의 humectant 대비 PEG의 길이가 긴 polymeric humectant를 사용한 경우 열에 대한 안정성이 높아지는 것을 확인 할 수 있었다. 한편 이들의 피부 투과를 촉진시키기 위하여 투과 촉진 펩타이드를 phage library로부터 선별하고자 하였다. 투과 촉진 펩타이드는 성장인자, 효소, 펩타이드의 투과 촉진을 위해 공통적으로 사용할 수 있는 구조이다. 그러나 피부의 투과정도는 물질자체의 특성도 영향을 미칠 수 있으나 제형의 성분에 따라서 영향을 받을 수 있다. 본 연구에서는 성장인자를 안정화 할 수 있는 polymeric humectant 제형을 기반으로 투과 촉진 펩타이드 선별을 수행하였다. 그 결과 대조군 펩타이드 대비 투과촉진이 향상된 결과를 확인했을 뿐만 아니라 PBS를 기반으로 선별된 투과 촉진 펩타이드 보다 polymeric humectant 제형에서는 투과도가 우수한 것을 확인 할 수 있었다. 본 연구의 결과는 기능성 생체고분자의 열 안정성 개선 및 피부 투과도 향상에 기여할 수 있을 것으로 기대된다.

Analysis of partial cDNA sequence from Theileria sergenti

  • Park, Jin-ho;Chae, Joon-seok;Kim, Dae-hyuk;Jang, Yong-suk;Kwon, Oh-deog;Lee, Joo-mook
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.797-805
    • /
    • 1999
  • T sergenti cDNA library were constructed to get a more broad information about the structural, functional or antigenic properties of the proteins, and analyzes for their partial cDNA sequences and expression sequences tags(ESTg). The mRNA were purified from T sergenti isolates to identify the information of antigen gene, then first and second strand cDNA was synthesized. EcoR I adaptor ligation and Xho I enzyme restriction were used to the synthesized cDNA, and ligated into a Uni-ZAP XR vector. T sergenti cDNA library was constructed with packaging and amplification in vitro. Antibody screening was performed with constructed T sergenti cDNA library using antisera against T sergenti. Among those clones, eight phagemids were rescued from the recombinant in vivo excision with f1 helper phage. Using the analysis of endonuclease restriction and PCR, the recombinant cDNA were proved having a 0.5-3.0kb of inserts. The eight of partial cDNA clones' sequences were obtained and examined for their homology using BLASTN and BLASTX. The eight of sequenced clones were classified into three groups according to the basis of database searches. A total 3,045bp of partial cDNA sequence were determined from six clones. The putatively identified clones contain a cytochrome c gene, a heat shock protein gene, a cyclophilin gene, and a ribosomal protein gene. The unidentified clones have a homology to ATP-binding protein(mtrA) gene of S argillaceus, DNA-binding protein(DBP) gene of Pseudorabies virus 85kDa merozoite protein gene of B bovis, mRNA spm1 protein of T annulata and glycine-rich RNA-binding protein mRNA of O sativa etc.

  • PDF

Antibody Engineering

  • Hong, Hyo-Jeong;Kim, Sun-Taek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.150-154
    • /
    • 2002
  • Monoclonal antibodies (Mabs) have been used as diagnostic and analytical reagents since hybridoma technology was invented in 1975. In recent years, antibodies have become increasingly accepted as therapeutics for human diseases, particularly for cancer, viral infection and autoimmune disorders. An indication of the emerging significance of antibody-based therapeutics is that over a third of the proteins currently undergoing clinical trials in the United States are antibodies. Until the late 1980's, antibody technology relied primarily on animal immunization and the expression of engineered antibodies. However, the development of methods for the expression of antibody fragments in bacteria and powerful techniques for screening combinatorial libraries, together with the accumulating structure-function data base of antibodies, have opened unlimited opportunities for the engineering of antibodies with tailor-made properties for specific applications. Antibodies of low immunogenicity, suitable for human therapy and in vivo diagnosis, can now be developed with relative ease. Here, antibody structure-function and antibody engineering technologies are described.

SEQUENCE ANALYSIS AND COMPARISON OF BOVINE αS1-CASEIN GENOMIC DNA

  • Lin, C.S.;Huang, M.C.;Choo, K.B.;Tseng, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권4호
    • /
    • pp.541-547
    • /
    • 1993
  • A phage clone containing the partial ${\alpha}_{S1}$-casein gene was isolated from a bovine genomic library by using mixed probes of ovine ${\alpha}_{S1}$-, ${\beta}$- and ${\kappa}$-casein cDNAs. Restriction enzyme mapping analysis for 14.6 kb revealed that the map was in conflict with the report of Meade et al. (1990), especially in the 3'-end fragment. Sequence analysis of 12.6 kb revealed a high AT/GC ratio (1.64); we have identified eight exon sequences according to the bovine ${\alpha}_{S1}$-casein cDNA sequence. The same exon/intron splice junction sequence was observed between these exons. We suggest that the bovine ${\alpha}_{S1}$-casein gene night contain a minimum of 18 exons and the full length is approximately 18-19 kb.

Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Joo, Sang-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.19-26
    • /
    • 2012
  • There are many cyclic peptides with diverse biological activities, such as antibacterial activity, immunosuppressive activity, and anti-tumor activity, and so on. Encouraged by natural cyclic peptides with biological activity, efforts have been made to develop cyclic peptides with both genetic and synthetic methods. The genetic methods include phage display, intein-based cyclic peptides, and mRNA display. The synthetic methods involve individual synthesis, parallel synthesis, as well as split-and-pool synthesis. Recent development of cyclic peptide library based on split-and-pool synthesis allows on-bead screening, in-solution screening, and microarray screening of cyclic peptides for biological activity. Cyclic peptides will be useful as receptor agonist/antagonist, RNA binding molecule, enzyme inhibitor and so on, and more cyclic peptides will emerge as therapeutic agents and biochemical tools.

감자로부터 단백질분해효소 억제제 II 유전자의 분리 (Isolation of Proteinase Inhibitor II Genes from Potato)

  • 이종섭
    • Journal of Plant Biology
    • /
    • 제32권2호
    • /
    • pp.79-87
    • /
    • 1989
  • Southern hybridization of genomic DNAs with radioactively labeled cDNA of tomato proteinase inhibitor II revealed that proteinase inhibitor II proteins in potato plants are encoded by a family of about 10 related sequences. Screening of potato EcoRI genomic library with the cDNA resulted in isolation of 13 recombinant phage clones which carry 3 different genomic regions. Of these clones, clones 8, 18, and 39 were subjected to restriction mapping and subcloning. Further characterization of the subclones of clones 8, 18 and 39 indicated that two inhibitor II genes are present on a 8.0 kb EcoRI fragment of clone 8, one on 3.3 and 0.8 kb EcoRI fragments of clone 18 and two genes on a 13.5 kb EcoRI fragment of clone 39.

  • PDF