• Title/Summary/Keyword: pfr gene

Search Result 2, Processing Time 0.017 seconds

A Possible Relation of the Helicobacter pylori pfr Gene to Iron Deficiency Anemia? (Helicobacter pylori 연관 철분 결핍성 빈혈과 H. pylori pfr 유전자 다형성과의 관련성)

  • Lee, Ji-Eun;Choe, Yon-Ho;Hwang, Tae-Sook
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.4 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • Purpose: H. pylori infection is thought to contribute to iron-deficiency anemia, especially during puberty. The ferritin protein Pfr of H. pylori is homologous to eukaryotic and prokaryotic ferritins. The purpose of this study was to analyze the H. pylori pfr status in gastric biopsy specimens according to clinical data, including antral gastritis with or without iron-deficiency anemia. Methods: A total of 26 H. pylori-positive patients aged from ten to 18 years were categorized into subgroups based on the presence or absence of iron-deficiency anemia. All of them had antral gastritis. Sixteen patients were proved to have iron-deficiency anemia by hematological study, two of which had a duodenal ulcer. The other ten patients showed normal hematological findings. DNA isolation was performed from each of the gastric biopsy specimens. PCR amplification of the pfr gene coding was done using two sets of primers. The pfr region, 501 bp, was generated by linking the sequences of the two PCR products. The nucleotide and protein sequences were compared between the pfr regions from Korean H. pylori strains and the NCTC 11638, 26695, and J99 strain, which were obtained from the Genbank. Sequence comparisons were also performed for the pfr regions between the iron-deficiency anemia (+) and (-) groups. Results: Analysis of the complete coding region of pfr gene revealed three sites of mutation. The Ser39Ala mutation was found in 100% (26/26), Gly111Asn in 26.9% (7/26), and Gly82Ser in 11.5% (3/26). There were no significant differences in the mutations of the pfr regions between the iron deficiency anemia (+) and (-) groups. Conclusion: The mutation in the pfr gene did not relate with the clinical phenotype, iron deficiency anemia. Further studies are needed on the aspects of host side or other complex factors to elucidate anemia. Further studies are needed on the aspects of host side or other complex factors to elucidate the mechanisms by which the H. pylori infection might lead to iron deficiency anemia.

  • PDF

Inter-Domain Signal Transmission within the Phytochromes

  • Song, Pill-Soon
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.215-225
    • /
    • 1999
  • Phytochromes (with gene family members phyA, B, C, D, and E) are a wavelength-dependent light sensor or switch for gene regulation that underscore a number of photo responsive developmental and morphogenic processes in plants. Recently, phytochrome-like pigment proteins have also been discovered in prokaryotes, possibly functioning as an auto-phosphorylating/phosphate-relaying two-component signaling system (Yeh et al., 1997). Phytochromes are photochromically convertible between the light sensing Pr and regulatory active Pfr forms. Red light converts Pr to Pfr, the latter having a "switch-on" conformation. The Pfr form triggers signal transduction pathways to the downstream responses including the expression of photosynthetic and other growth-regulating genes. The components involved in and the molecular mechanisms of the light signal transduction pathways are largely unknown, although G-proteins, protein kinases, and secondary messengers such as $Ca^{2+}$ ions and cGMP are implicated. The 124-127 kDa phytochromes form homodimeric structures. The N-terminal half contains the tetrapyrrolic phytochromobilin for red/far-red light absorption. The C-terminal half includes both a dimerization motif and regulatory box where the red light signal perceived by the chromophore-domain is recognized and transduced to initiate the signal transduction cascade. A working model for the inter-domain signal communication within the phytochrome molecule is proposed in this Review.

  • PDF