• Title/Summary/Keyword: petrochemical study

Search Result 356, Processing Time 0.028 seconds

Seasonal Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Residential Areas Around Petrochemical Complexes and Risk Assessment Using Monte-Carlo Simulation (석유화학단지 주변 주거지역 다환방향족탄화수소(PAHs)의 농도와 Monte-Carlo 모의실험을 통한 위해성평가)

  • Park, Dong-Yun;Choe, Young-Tae;Yang, Wonho;Choi, Kil-Yong;Lee, Chae-Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.4
    • /
    • pp.366-377
    • /
    • 2021
  • Background: Polycyclic aromatic hydrocarbons (PAHs) are generated in petrochemical complexes, can spread to residential areas and affect the health of residents. Although harmful PAHs are mainly present in particle phase, gas phase PAHs can generate stronger toxic substances through photochemical reaction. Therefore, the risk assessment for PAHs around the petrochemical complex should consider both particle and gas phase concentrations. Objectives: This study aimed to investigate the concentration characteristics of particle and gas phase PAHs by season in residential areas around petrochemical complexes, and to assess the risk of PAHs. Methods: Samples were collected for 7 days by seasons in 2014~2015 using a high volume air sampler. Particle and gas phase PAHs were sampled using quartz filter and polyurethane foam, respectively, analyzed by GC-MS. Chronic toxicity and probabilistic risk assessment were performed on 14 PAHs. For chronic toxicity risk assessment, inhalation unit risk was used. Monte-Carlo simulation was performed for probabilistic risk assessment using the mean and standard deviation of measured PAHs. Results: The concentration of particle total PAHs was highest in autumn. The gas phase concentration was highest in autumn. The average gas phase distribution ratio of low molecular weight PAHs composed of 2~3 benzene rings was 85%. The average of the medium molecular weight composed of 4 benzene rings was 53%, and the average of the high molecular weight composed of 5 or more benzene rings was 9%. In the chronic toxicity risk assessment, 7 of the 14 PAHs exceeded the excess carcinogenic risk of 1.00×10-6. In the Monte-Carlo simulation, Benzo[a]pyrene had the highest probability of exceeding 1.00×10-6, which was 100%. Conclusions: The concentration of PAHs in the residential area around the petrochemical complex exceeded the standard, and the excess carcinogenic risk was evaluated to be high. Therefore, it is necessary to manage the air environment around the petrochemical complex.

The thermal impedance spectroscopy on Li-ion batteries using heat-pulse response analysis

  • Barsoukov Evgenij;Jang Jee Hwan;Lee Hosull
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.145-161
    • /
    • 2001
  • Novel characterization of thermal properties of a battery has been introduced by defining its frequency-dependent thermal impedance function. Thermal impedance function can be approximated as a thermal impedance spectrum by analyzing experimental temperature transient which is related to the thermal impedance function through Laplace transformation. In order to obtain temperature transient, a process has been devised to generate external heat pulse with heating wire and to measure the response of battery. This process is used to study several commercial Li-ion batteries of cylindrical type. The thermal impedance measurements have been performed using potentionstat/galvanostate controlled digital signal processor, which is more commonly available than flow-meter usually applied for thermal property measurements. Thermal impedance spectra obtained for batteries produced by different manufactures are found to differ considerably. Comparison of spectra at different states of charge indicates independence of thermal impedance on charging state of battery. It is shown that thermal impedance spectrum can be used to obtain simultaneously thermal capacity and thermal conductivity of battery by non-linear complex least-square fit of the spectrum to thermal impedance model. Obtained data is used to simulate a response of the battery to internal heating during discharge. It is found that temperature inside the battery is by one-third larger that on its surface. This observation has to be considered to prevent damage by overheating.

  • PDF

Analysis of Organic Impurities in Terephthalic Acid Manufacturing Process (테레프탈산 제조공정 중의 유기불순물 분석)

  • Kim, Dong Bum;Cha, Woonou;Kwak, Kyu Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1204-1208
    • /
    • 1996
  • The organic impurities are formed in the p-xylene oxidation process to terephthalic acid(TPA) and they are present in the filtrate(mother liquor) solution or the TPA particles. The organic impurities present in the p-xylene oxidation are formed through side reactions or incomplete reaction. In this study, the main organic impurities, such as benzoic acid, p-toluic acid, p-tolualdehyde, 4-carboxybenzaldehyde, phthalic acid, isophthalic acid, trimellitic acid, and 4-hydroxymethyl benzoic acid were identified simultaneously by gas chromatograghy. The above impurities were reacted with bis(trimethylsilyl)trifluoroacetamide in the mixture of internal standard solution and pyridine solution by trimethylsilylation, where the internal standard solution was made by 99% bis (trimethylsilyl)trifluoroacetamide and 1% trimethylchlorosilane. The main organic impurities above mentioned can be analyzed quantitatively within 50 min.

  • PDF

Assessment of Best Available Technology of Wastewater Treatment Facilities in Petrochemical Basic Compound Manufacturing and Plastics and Synthetic Resins Manufacturing (석유화학계 기초화합물 제조시설과 합성수지 및 기타 플라스틱물질 제조시설의 폐수처리시설 BAT평가)

  • Kim, Youngnoh;Lim, Byungjin;Kwon, Osang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for petrochemical basic compound manufacturing (PBCM) and plastics and synthetic resins manufacturing (PSRM) industry. Wastewater discharged from the each category contains high concentration of COD and toluene. Eighteen sites were surveyed and wastewater qualities were analyzed. Six and two different technologies were applied to the PBCM and PSRM industry for the end-of-pipe treatment process, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options: typical activated-sludge process + sand filtration + activated carbon adsorption (PBCM) and wet oxidation + chemical precipitation + typical activated-sludge process + chemical precipitation (PSRM) were selected as the BAT for each industry.

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

A Study on the Musculoskeletal Disorders in Petrochemical Industry (석유화학산업의 근골격계질환 실태에 관한 연구)

  • Park, Jung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.77-86
    • /
    • 2006
  • After conducting an investigation of a specific workplace, 372 labor workers, who are employed at a certain domestic petrochemical company valve operating and maintenance processing section, were personally questioned about specific work-related ailments. According to the results, 57% of workers who were working in the petrochemical industry have suffered from pain-related musculoskeletal disorders in, at least, more than 1 body part. Specifically, there are more than 28% of workers suffering from pain in more than two body parts. Among the total work population, 18.8 % of workers are assumed to have a high probability of being diagnosed with musculoskeletal disorder. Also, according to the RULA checklist which evaluates environmental improvement conditions of the workplace, 76.7% of workplaces among the inspected areas have high hazardous work factors that are related to musculoskeletal disorder and needs to be improved upon and observed right away or in the foreseeable future. The prior factor has a high correlation and pain rate which is due to an improper work posture. Originally, this improper work posture is caused mostly by ergonomically incorrect facility design. Furthermore, the structure of the workplace does not consider the worker's individual build.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

A Standard Method for Progress Measurement in a Petrochemical Plant EPC Project (석유화학 플랜트 EPC 사업의 진도율 산정표준의 제안)

  • Cho, Hong-Yeon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2011
  • In proportion to continuing growth of overseas plant market and the trend of its mega scale of the project, the importance of management is significantly emphasized for the successful execution of the project. And it is recognized that progress control is the most important management item amongst the others in the management. Progress control is importance of progress measurement for performance measurement and process control of project, but it is hardly obtainable securing the objectivity in the progress measurement since the progress measurement are being applied differently in accordance with the project conditions and the experience level of the person in charge for the progress control. This study has conducted as following to propose a standard method for progress measurement in a petrochemical plant protect. Domestic and overseas plant projects are investigated variously with the applied method of progress measurement, and the deduced problem of progress measurement. And then standard method for progress measurement of engineering, procurement, construction and commissioning has been proposed according to comparison and analysis of practices in domestic & overseas plant project, procedures for progress control in the globally reputed petrochemical client, company rules and recommendation of the expert in progress control.

  • PDF

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.