• 제목/요약/키워드: perturbed parameter

Search Result 71, Processing Time 0.027 seconds

A Study on the Effects of Parameter Sensitivity on Matched Field Processing

  • Park, Cheolsoo;Woojae Seong;Park, Hang-Soon;Lee, Kyu-Yeul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1E
    • /
    • pp.31-37
    • /
    • 2001
  • Matched Field Processing (MFP) is a successive process of correcting mismatches between true and assumed parameters by matching the measured acoustic field data with numerically simulated data which we call replica. The MFP is widely used both in geo-acoustic parameter inversions and in source localizations. Whether a certain parameter can be inverted effectively or whether a source can be localized correctly depends on the amount of the influence that a parameter has on the acoustic field during the matching process. Sensitive parameters can be better estimated than the less sensitive ones in MFP. On the contrary, the sensitive parameters affect adversely on the source localization results when they have uncertainties. In this paper, a sensitivity index is defined based upon the field variation resulting from the perturbed parameters. Numerical test results show that the index behaves in accordance with the results of source localization under a mismatched environment and also with the inversion solutions.

  • PDF

A new approach on the robust control for robot manipulator using Krasovskii theorem (Krasovskii 정리를 이용한 로보트 매니퓰레이터의 강건제어에 관한 새로운 접근)

  • Kim, Chong-Soo;Park, Sei-Seung;Park, Chong-Kug
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.590-595
    • /
    • 1996
  • The robust control technique is generally the iterative design method to determine a robust control for perturbed system with prescribed range of perturbation based on the robust stability measure. However, robot manipulator has the structured pertubation and the unstructured one. This paper proposes the robust technique for designing controller such that the trajectory of end-effector of robot manipulator tracks asymptotically the desired trajectory for all allowable variations in the manipulator's parameter. For satisfying asymptotical stability though we can not know the bound of perturbations and the parameter variations, the relation between the unknown parameter and the parameter of nominal system can be derived from Krasovskii theorem and we construct the new robust control using that relation. (author). 12 refs., 6 figs.

  • PDF

Performance Management of Communication Networks for Computer Intergrated Manufacturing (컴퓨터 통합 생산을 위한 통신망의 성능 관리)

  • Lee, S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.126-137
    • /
    • 1994
  • Performance management of computer networks is intended to improve a given network performance in order for more efficient information exchange between subsystems of an integrated large-scale system. Importance of perfomance management is growing as many functions of the large- scale system depend on the quality of communication services provided by the network. The role of performance management is to manipulate the adjustable protocol parameters on line so that the network can adapt itself to a dynamic environment. This can be divided into two subtasks : performance evaluation to find how changes in protocol parameters affect the network performance and decision making to determine the magnitude and direction of parameter adjustment. This paper is the first part of the two papers focusing on conceptual design, development, and evaluation of performance management for token bus networks. This paper specifically deals with the task of performance evaluation which utilizes the principle of perturbation analysis of discrete event dynamic systems. The developed algorithm can estimate the network performance under a perturbed protocol parameter setting from observations of the network operations under a nominal parameter setting.

  • PDF

Sensitivity study of parameters important to Molten Salt Reactor Safety

  • Sarah Elizabeth Creasman;Visura Pathirana;Ondrej Chvala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1687-1707
    • /
    • 2023
  • This paper presents a molten salt reactor (MSR) design parameter sensitivity study using a nodal dynamic modelling methodology with explicitly modified point kinetics equation and Mann's model for heat transfer. Six parameters that can impact MSR safety are evaluated. A MATLAB-Simulink model inspired by Thorcon's 550MWth MSR is used for parameter evaluations. A safety envelope was formed to encapsulate power, maximum and minimum temperature, and temperature-induced reactivity feedback. The parameters are perturbed by ±30%. The parameters were then ranked by their subsequent impact on the considered safety envelope, which ranks acceptable parameter uncertainty. The model is openly available on GitHub.

Direct adaptive control of nonlinear robot dynamics

  • Nam, Kwang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.870-875
    • /
    • 1987
  • The payload variation and modeling error can lye parameterized in such a way that known nonlinear functions are multiplied linearly by parameter errors. An adaptive control algorithm is derived for a perturbed linear system with such parameterization. Hence, in this approach no linear approximation of robot system is needed for the application of an adaptive law. The stability of the adaptive control algorithm is established and also supported by a computer simulation result.

  • PDF

Robust controller design of underwater vehicle against structured perturbation (구조화된 교란에 대한 수중 운동체의 견실 제어기 설계)

  • 이갑래;김삼수;이재명;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.850-856
    • /
    • 1992
  • The problem of robust control of a underwater vehicle subject to variation of a real parameter and velocity is considered. The controller set which stabilized perturbed plant is chosen using numerical gradient method and the controller is used for nominal performance and robust performance. Simulation results are presented to show that the precise montion control of the controller is accomplished under perturbation in the system.

  • PDF

Controller design by using pole-sensitivity (극점감도를 이용한 제어기 설계)

  • 임동균;강진식;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.446-450
    • /
    • 1990
  • In this paper, we present a method of analysing perturbed linear system by pole sensitivity defined by the rate of pole movement with respect of perturbation. Pole sensitivity give us not only the rate of pole movement but also the directional information of the pole movement. We present a method of design of a LQR by considering the pole sensitivity and show that the suggested method guarantee the stability robustness of parameter perturbation.

  • PDF

Parametric Optimization Procedure for Robust Flight Control System Design

  • Tunik, Anatol A.;Ryu, Hyeok;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.95-107
    • /
    • 2001
  • This paper is devoted to the parameter optimization of unmanned aerial vehicle's (UAV) flight control laws. Optimization procedure is based on the ideas of mixed $H_2/H_{\infty}$ control of multi-model plants. By using this approach, some partial $H_2$-terms defining the performance of nominal and parametrically perturbed Flight Control System (FCS) responses to deterministic command signals in stochastic atmosphere as well as $H_{\infty}$-terms defining robustness of the FCS can be incorporated in the composite cost function. Special penalty function imposed on the location of closed-loop system's poles keeps the speed of response and oscillatory properties for both nominal and perturbed FCS in reasonable limits. That is the reason why this procedure may provide reasonable trade-off between the performance and robustness of FCS that are very important especially for UAV. Its practical importance is illustrated by case studies of lateral and longitudinal control of small UAV.

  • PDF

Feedback control design for intelligent structures with closely-spaced eigenvalues

  • Cao, Zongjie;Lei, Zhongxiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.903-918
    • /
    • 2014
  • Large space structures may have resonant low eigenvalues and often these appear with closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned, so a method is presented to design the feedback control law of intelligent structures with closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the original system, the first order perturbations of eigenvalues are discussed when the parameter modifications of the system are introduced. Numerical examples are given to demonstrate the application of the present method.

A robust control system design by a parameter space approach based on sign difinite condition

  • Kimura, Tetsuya;Hara, Shinji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1533-1538
    • /
    • 1991
  • A parameter space approach for robust control system design is developed by reducing several design specifications to sign definite conditions. It is shown that the gain and phase margin constraints for the parametric perturbed plant hold if and only if the four Kharitonov systems satisfy the margins. On pole location, it is shown that D-stability of convex combinations (1-t)p(s)+tq(s) can be determined by the coefficients corresponding to p(s) and q(s) based on the sign definite condition. We show a method of PI-type robust control system design as a useful example.

  • PDF