• 제목/요약/키워드: perturbation of magnetic field vector

검색결과 6건 처리시간 0.025초

Magnetothermoelastic stress in orthotropic hollow cylinders due to radially symmetric thermal and mechanical loads

  • Dai, H.L.;Fu, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.699-707
    • /
    • 2006
  • In the paper, a direct method of solution of the Navier equation is presented. An orthotropic thick hollow cylinder under a one-dimensional steady-state temperature distribution and a uniform magnetic field with general types of thermal and mechanical boundary conditions is considered. The Navier equation in terms of displacement is derived and solved analytically by the direct method, and magnetothermoelastic responses and perturbation of the magnetic field vector in the orthotropic thick hollow cylinder is described. The present method is suitable for orthotropic thick hollow cylinders placed in an axial magnetic field with arbitrary thermal and mechanical boundary conditions. Finally, numerical examples are carried out and discussed.

Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres

  • Dai, Hong-Liang;Rao, Yan-Ni
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.49-64
    • /
    • 2011
  • An analytical method is presented to investigate electromagnetothermoelastic behaviors of a hollow sphere composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic field, subjected to electric, thermal and mechanical loads. For the case that material properties obey an identical power law in the radial direction of the FGPM hollow sphere, exact solutions for electric displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow sphere are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful discussion and numerical examples are presented to show the significant influence of material inhomogeneity. The aim of this research is to understand the effect of composition on electromagnetothermoelastic stresses and to design optimum FGPM hollow spheres.

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

Magneto-thermo-elastic response of exponentially graded piezoelectric hollow spheres

  • Allam, M.N.M.;Tantawy, R.;Zenkour, A.M.
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.303-318
    • /
    • 2018
  • This article presents a semi-analytical solution for an exponentially graded piezoelectric hollow sphere. The sphere interacts with electric displacement, elastic deformations, electric potentials, magneto-thermo-elasticity, and hygrothermal influences. The hollow sphere may be standing under both mechanical and electric potentials. Electro-magneto-elastic behavior of magnetic field vector can be described in the hollow sphere. All material, thermal and magnetic properties of hollow sphere are supposed to be graded in radial direction. A semi-analytical technique is improved to deduce all fields in which different boundary conditions for radial stress and electric potential are presented. Numerical examples for radial displacement, radial and hoop stresses, and electric potential are investigated. The influence of many parameters is studied. It is seen that the gradation of all material, thermal and magnetic properties has particular effectiveness in many applications of modern technology.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

고상 프라즈마내에서의 전자파분산측과 확산효과 (Dispersion Relation including the Effect of Diffusion for E.M. Wave in Solid-State Plasma)

  • 조철
    • 전기의세계
    • /
    • 제20권5호
    • /
    • pp.15-18
    • /
    • 1971
  • Up to now, there have been numerous investigations about the effect of diffusion on the wave propagation in gaseous plasmas, but not so much in semiconductor magnetoplasmas. However, currently, it becomes the centor of interest to work with the latter problem, and this paper deals with the dispersion equation including diffusion effect in the latter case to see how diffusion affects the equation in which diffusion term is neglected in the first place, and the analysis is based on the assumption that the plasma can be treated as a hydrodynamical fluid, since, from a macroscopic view point, the plasma interacting with a magnetic field can be considered as a magneto-hydrodynamical fluid, an electrically conducting fluid subjected to electromagnetic force, and the system is linear. The results of the relation and computation show that in the non-streaming case the diffusion terms appear in the equation as perturbation terms and the amplitude of the wave vector changes parabolically with the variation of the angular frequency and the longitudinal modes are observed.

  • PDF