• Title/Summary/Keyword: personal sampler

Search Result 50, Processing Time 0.025 seconds

A Study on Metal Concentrations in the Air of Metal Products Manufacturing Industry (금속제품 제조 산업장내 공기중 금속농도에 관한 연구)

  • Kang, Yong Seon;Kim, Se Dong;Ku, Tae Hyeong;Yoon, Hyeong Ryeol;Moon, Deog Hwan;Han, Yong Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.249-264
    • /
    • 1996
  • This study was conducted for the purpose of obtaining the fundamental data on improvement of working environment and contributing to health improvement of workers who dealed with metal by assessing the metal concentration in air of industries located in Chang-Won Industrial Complex. Authors measured the concentration of metals(Al, Cd, Cr, Cu, Mn, Ni, Pb, Sn and Zn) is the air to 25 working processes of 73 industries by flame atomic absorption spectrometry from February to December 1994. Personal air sampler was used for air sampling with mixed cellulose-ester membrane filter. The results were as follows : 1. The geometric means(range) of metal concentration; 1) Al: $0.1505mg/m^3$ ($0.0147-18.6100mg/m^3$) 2) Cd: $0.0077mg/m^3$ ($0.0003-7.0710mg/m^3$) 3) Cr: $0.0163mg/m^3$ ($0.0013-1.1510mg/m^3$) 4) Cu: $0.0097mg/m^3$ ($0.0009-0.4950mg/m^3$) 5) Mn: $0.0412mg/m^3$ ($0.0006-4.7877mg/m^3$) 6) Ni: $0.0088mg/m^3$ ($0.0001-1.0170mg/m^3$) 7) Pb: $0.0152mg/m^3$ ($0.0015-0.4499mg/m^3$) 8) Sn: $0.0486mg/m^3$ ($0.0037-0.1500mg/m^3$) 9) Zn: $0.1911mg/m^3$ ($0.0122-8.2920mg/m^3$) 2. The geometric mean of lead exceeded TWA in assembling process of other general purpose machinery not elsewhere classified products manufacturing industries.

  • PDF

Exposure and Risk Assessment for Operator Exposure to Insecticide Acetamiprid during Water Melon Cultivation in Greenhouse using Whole Body Dosimetry (수박 시설재배에서 살충제 Acetamiprid 사용 시 전신노출법에 의한 농작업자의 노출 및 위해성평가)

  • Kim, Eunhye;Lee, Jiho;Sung, Jeonghee;Lee, Jonghwa;Shin, Yongho;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.247-257
    • /
    • 2014
  • Assessment for operator's dermal and inhalation exposure to acetamiprid during cultivation of water melon in greenhouse was carried out. For dermal exposure measurement, whole body dosimetry (WBD) was performed as the first trial in Korea. WBD consists of cotton/polyester outer clothes and cotton inner clothes. Hand exposure was measured by washing of nitrile gloves and hands while head exposure was monitored by face/neck wipe technique. Inhalation exposure was monitored with personal air sampling pumps and IOM sampler (glass fiber filter). Analytical limit of quantitation was 2.5 ng/mL. Good reproducibility (C.V < 8.7%), linearity ($R^2$ > 0.99) and recovery (70~119%) were obtained. Field recovery of acetamiprid was 77~95%. During mixing/loading, hand exposure of acetamiprid was about 10 times ($229.7{\mu}g$) more than that of application case ($20.9{\mu}g$). During application, total dermal exposure was $1207.4{\mu}g$. Exposure of lower legs was $1132.1{\mu}g$, which is 93.8% of the total dermal exposure. Inhalation exposure during mixing/loading and application was not detected. Margin of safety (MOS) was calculated for risk assessment using male Korean average body weight (70 kg) and acceptable operator exposure level ($124{\mu}g/kg/day$) to give 140, suggesting that health risk of operator during treatment of acetamiprid for water melon in greenhouse could be safe.

Volatilization of Sprayed Pesticides in Greenhouse using a Lysimeter (라이시미터를 이용한 시설하우스 내에 살포한 농약의 휘산 양상)

  • Kim, Danbi;Kim, Taek-Kyum;Kwon, HyeYong;Hong, Su-Myeong;Park, Byung-Jun;Lim, Sung-Jin;Lee, Hyo-Sub;Moon, Byeong-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • In cultivation environment, various pesticides are used and some of them could be volatilized into the air. This could affect farmer's health and also cause environmental pollution. This study was carried out to investigate the volatilization of pesticides, and use the reference data for preventing farmer's pesticide intoxication and securing worker safety. The experiment was conducted in a greenhouse using a lysimeter which was of $1m^2$ area and 1.5 m depth filled with upland soil. The pesticides treated in lysimeter soil were ethoprophos (5.0% GR), diazinon (34.0% EC), alachlor (43.7% EC), metolachlor (40.0% EC), chlorpyrifos (2.0% GR), pendimethalin (31.7% EC), carbaryl (50.0% WP), napropamide (50% WP), tebuconazole (25.0% WP) and imidacloprid (2.0% GR). Each pesticide was treated at a concentration of 770.5 mg based on A.I (%). The recovery of pesticide ranged from 77.4 to 99.3%. The volatilized pesticides in air were collected by personal air sampler with PUF tube at 4 l/min flow rate. In addition, temperature and humidity were measured. The collected samples were extracted using acetone in a soxhlet apparatus for 8 hours. The extracted pesticides were resoluted with acetonitrile and diluted 5 times. It was analyzed with LC-MS/MS. For 720 hours experiment, the largest vaporization amount of each pesticide in air was ethoprophos $15.24{\mu}g/m^3$, diazinon $5.14{\mu}g/m^3$, pendimethalin $2.70{\mu}g/m^3$, chlorpyrifos $1.76{\mu}g/m^3$, alachlor $1.40{\mu}g/m^3$, metolachlor $1.12{\mu}g/m^3$, carbaryl $0.27{\mu}g/m^3$, napropamide $0.22{\mu}g/m^3$, tebuconazole $0.11{\mu}g/m^3$ and imidacloprid $0.05{\mu}g/m^3$. The R value (coefficient of correlation) between volatilization and vapor pressure of pesticides is higher than 0.99. Therefore, there is high correlation between volatilization and vapor pressure of pesticides.

Airborne Asbestos Concentrations of Dental Laboratories in One Metropolitan City (치과기공소의 공기 중 석면농도 분포에 관한 연구 -일개 광역시를 중심으로-)

  • Jung, In-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • This study was performed to investigate the problems of using asbestos for dental technicians. Samples for analysing were sampled by personal sampler in 40 sampling points of 10 dental laboratories in Daegu city from December 2010 to January 2011 and counted with phase contrast microscopy. The results were as follows: 1. Asbestos concentration(geometric mean) of 40 sampling points in 10 dental laboratories was 0.0061 f/cc and it was under recommended industrial and indoor air standard, but the concentration of asbestos in only two dental laboratories was over indoor recommended standard. 2. The concentration of asbestos in processing room and burnout room was 0.0099 f/cc and 0.0037 f/cc, respectively. 3. The mean concentration(GM) of asbestos by kinds of casting ring liners was 0.0159 f/cc in dental laboratories using industrial asbestos, 0.0104 f/cc in them using asbestos containing ring liners, and 0.0026 f/cc in them using non-asbestos ring liners. Casting ring liners using in dental laboratories should be substituted with non-asbestos liners, because most of dental laboratories were using asbestos containing ring liners and a few of them showed higher concentration than recommended standard.

Development of an On Site Diagnostic Tool to Detect Neuropsychiatric Impairment due to Chronic Organic Solvent Exposure (만성유기용제 폭로에 의한 정신신경학적 이상소견의 현장진단방법 개발에 관한 연구)

  • Cho, Soo-Hun;Kim, Sun-Min;Kwon, Ho-Jang;Yim, Yong-Hyun;Lim, Hyun-Sul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.1 s.41
    • /
    • pp.147-164
    • /
    • 1993
  • A study has been conducted on developing questionnaires to serve as on site diagnostic tools for the early detection of neuropsychiatric impairment among workers chronically exposed to low-level organic solvents. Two drafts of tentative questionnaires have been developed as follows; several question items were selected from questionnaires which were administered to workers exposed to organic solvents in previous studios and were grouped into each symptom category based on the presence of its association using Guttman scaling method, then these selected items were reviewed by neuropsychiatry specialists. The final draft of the questionnaire (total symptom score=36) was developed by selecting 33 question items which had more than a 0.88 Guttman coefficient of reproducibility in each symptom category from a pilot study in which these tentative questionnaires were administered to workers manufacturing soles. Three plants using organic solvents and one plant never using organic solvents as a control group were selected to test the reliability and validity of the developed questionnaires. The major organic solvent in the workplace environment detected by a personal air sampler and GC/MSD nab toluene. The concentration of toluene in air from the department using organic solvent was statistically different from that of the department never using organic solvent. The concentration of toluene from almost all of the workplace did not exceed the allowable level. There was no statistically significant difference between the concentration of urinary hippuric acid from the workers of the department using organic solvent and that of the department never using it. Total symptom score of the plant never using organic solvents was 9.8 and those of the three plants using organic solvents were 15.6, 14.7, and 13,7 respectively. In order to evaluate the validity of the questionnaires, the workers from two different departments of the plant in which usage of organic solvents are totally dofferemt were compared. The total symptom score was 17.8 for workers of the department using organic solvent and 13.5 for the department never using organic solvent and scores of each symptom group between exposure and non-exposure group also showed statistically significant difference. The finding that total symptom score of the exposure group increased as the duration of employment increased indirectly suggests the usefulness of the developed questionnaire to assess the health effects of chronic exposure to organic solvents. The correlation coefficient, which was calculated to evaluate the test-retest reliability, was 0.581 (p=0.001). The coefficient of Crohnbach which reflects the internal consistency of the questionnaire was 0.91. In conclusion, the reliabilty of the questionnaire was well maintained over the time lapse between the two administrations of the questionnaire and despite the seasonal difference.

  • PDF

The Relationship Between Hippuric Acid in Blood Plasma and Toluene Concentration in the Air of Workplace (톨루엔 폭로근로자의 혈장중 마뇨산과 공기중 톨루엔과의 상관관계)

  • Hwang, Cheon-Hyun;Lee, Won-Jin;Chang, Soung-Hoon;Kim, Hyoung-Ah
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.1
    • /
    • pp.45-50
    • /
    • 2000
  • Objectives : This study was undertaken to evaluate correlation between the levels of hippuric acid in blood plasma (HAP) and those of toluene concentration in the workplace air. Methods : Study subjects were composed of two groups; 21 workers who were occupationally exposed to toluene and 25 rural-area residents who were not exposed to any known occupational toluene source, as an exposed group and a reference group, respectively. Mean age and work duration of the exposed was 42 years and five years, respectively. Mean age of the reference was 42 years. To determine toluene concentrations in the workplace air, air sampling has been conducted for more than six hours using a personal sampler, and analyzed by a gas chromatography-flame ionization detector. Concentrations of hippuric acid in biological samples were determined by a high performance liquid chromatography-ultraviolet detector. Results : Geometric mean(geometric standard deviation) of HAP and hippuric acid in urine(HAU) for the exposed was 1.39(2.21) mg/L and 2.77(1.46) g/L, respectively, which were significantly different from those of the reference [HAP, 9.45(2.94); HAU, 0.37(0.45)]. Teluene concentration in the workplace air was 86.92(range: $45.18\sim151.23$)ppm. The level of HAP or HAU was significantly correlated (r=0.70 and r=0.63, respectively) with that of toluene in the workplace air. The estimated regression equation was logHAP(mg/L)=-3.60+1.93 log(toluene, ppm) or logHAU(g/L)=-0.85+0.67 log(toluene, ppm). The magnitude of correlation was further enhanced when analyzing relationship between toluene concentrations lower than 100 ppm and its corresponding HAP levels. Conclusion : Overall, plasma hippuric acid levels were well correlated with toluene concentrations in the workplace air, and a statistically significant correlation was observed for the samples with toluene concentration lower than 100 ppm.

  • PDF

Exposure Assessment of Apple Orchard Workers to the Insecticide Imidacloprid Using Whole Body Dosimetry During Mixing/Loading and Application (전신복장법을 이용한 농약 조제 및 살포 과정 중 살충제 Imidacloprid에 대한 사과 과수원 농작업자의 노출 평가)

  • Lee, Jae Yun;Noh, Hyun Ho;Park, Hyo Kyoung;Jeong, Hye Rim;Jin, Me Jee;Park, Kyung-Hun;Kim, Jeong-Han;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.271-279
    • /
    • 2016
  • To evaluate exposure characteristics of the insecticide imidacloprid to apple orchard workers during treatment on orchard fields and evaluate its potential risk using a whole body dosimetry (WBD) method, 1,000-time diluted acephate+imidacloprid 25(20+5)% solutions were sprayed on 10 apple orchard fields in Cheongju with a speed sprayer at a rate of 3,000 L/ha/person, after put on clothes such as inner/outer clothes, personal air pump with a IOM sampler, nitrile glove and mask. Exposure test included mixing, loading and application steps. The test pesticide imidacloprid residues in the collected samples were analyzed with a HPLC-DAD. Recoveries ranged from 81.5 to 108.6% for analytical method validation and from 73.8 to 86.7% for field recovery. Total exposed amounts to mixer/loader and applicator were found to be 0.0014-0.0279% of total applied active ingredient of imidacloprid. Glove exposure of both mixer/loader and applicator was higher than the other parts. Margins of safety of mixer/loader and applicator were calculated to be 97-355 and 46-196, respectively, indicating that exposure risk of imidacloprid to apple orchard workers by spraying with a speed sprayer was very low.

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard (포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정)

  • Cho, ll Kyu;Park, Joon Seong;Park, So Hyun;Kim, Su Jin;Kim, Back Jong;Na, Tae Wong;Nam, Hyo Song;Park, Kyung Hun;Lee, Jiho;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.286-293
    • /
    • 2016
  • BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.