• Title/Summary/Keyword: personal electric vehicle

Search Result 38, Processing Time 0.027 seconds

Design of Charging Platform for an Electric Vehicle using Electric Pole to support Location-Based Services (LBS 서비스를 제공하는 전주를 이용한 전기차 충전 플랫폼의 설계 제안)

  • Cha, ByungRae;Choi, GeunYoung;Kim, NamHo;Lee, SeongHo;Park, Sun;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2020
  • As the demand of electric vehicles has been increased recently, their related industries are developing. In particular, the market of electric vehicles charging infrastructure is expanding rapidly and users have much demand in convenience of electric vehicles charging site. Because an charging site using electric pole of KEPCO can make use of that installed nearby public parking lots, there are many commercial construction and convenient facilities near around it. In this situation, users can do shopping or their personal business during charging. In this paper, we proposed the design of charging platform for electric vehicles to support LBS for users to do shopping or personal business conveniently.

An Exploratory Study on the Applicability of Thin-Film Photovoltaic Cells for Auxiliary Power Supply of a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 보조 전력공급을 위한 유연소재 태양전지의 적용 가능성 연구)

  • Kang, Seok-Won;Han, Soo-Jin;Jeong, Rag-Gyo;Oh, Hyuck Keun;Ko, Sangwon;Choi, Dooho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • Recently, trends in new transportation system development have been primarily focused on sustainable and ecofriendly mobility solutions. The personal rapid transit (PRT) system has been considered a promising candidate in this category; its competitiveness is being improved through convergence with cutting-edge electric vehicle (EV) technologies. However, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. In this study, a design approach for a solar-power assisted PRT system is presented with small-scale demonstrations aimed at circumventing challenges facing its adoption, as well as helping speed the transition to electric-powered ground transportation. From the results, it is expected that flexible photovoltaic (PV) cells will be able to supply 11% of the power required by the service equipment installed in a prototype vehicle. In particular, flexible photovoltaic (PV) cells are advantageous in terms of cost, weight, and design considerations. Most importantly, the cells' flexibility and attach-ability are expected to give them great potential for extended application in various areas.

A Study on the Power Management Algorithm of Centralized Electric Vehicle Charging System (중앙제어기반 전기자동차 충전시스템의 에너지관리 알고리즘에 관한 연구)

  • Do, Quan-Van;Lee, Seong-Joon;Lee, Jae-Duck;Bae, Jeong-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.566-571
    • /
    • 2011
  • As Plug-in Hybrid Vehicle and Electric Vehicle (PHEV/EV) take a greater share in the personal automobile market, their high penetration levels may bring potential challenges to electric utility especially at the distribution level. Thus, there is a need for the flexible charging management strategy to compromise the benefits of both PHEV/EV owners and power grid side. There are many different management methods that depend on the objective function and the constraints caused by the system. In this paper, the schema and dispatching schedule of centralized PHEV/EV charging spot network are analyzed. Also, we proposed and compared three power allocation strategies for centralized charging spot. The first strategy aims to maximize state of vehicles at plug-out time, the rest methods are equalized allocation and prioritized allocation based on vehicles SoC. The simulation results show that each run of the optimized algorithms can produce the satisfactory solutions to response properly the requirement from PHEV/EV customers.

Noise Analysis for the Operation of the eVTOL PAV using AEDT (Aviation Environmental Design Tool) (AEDT(Aviation Environmental Design Tool)를 이용한 전기추진 수직이착륙형 PAV 운영을 위한 소음 분석)

  • Yun, Ju-Yeol;Lee, Bong-Sul;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • In this paper, we selected commuting scenarios in the most congested metropolitan area in Korea, and conducted noise analysis during personal air vehicle (PAV) operation using aviation environmental design tool (AEDT)software which was developed by Federal Aviation Administration (FAA). Noise is the second important factor after safety in order to operate PAVs through concepts such as ODM (on-demand mobility) introduced by National Aeronautics and Space Administration (NASA). Noise analysis were performed by modeling low-noise ePAVs as commercial helicopters and predicted residential suitability in order to resolve problems in which accurate NPD (noise power distance) data from PAVs were not released. The application of noise reduction technology such as electric propulsion has significantly reduced noise exposure levels and has reached the conclusion that commuting with PAVs is feasible without noise problems in the metropolitan area.

A Study on the Application of Human Factors to the Introduction of PAV & UAM

  • Ahn, Kyung Su;Jeong, Won Kyong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.171-175
    • /
    • 2020
  • The present and future cities are expanding, and the noise and environmental pollution in cities are getting worse day by day, causing saturation of road and subway traffic. As a result, citizens are spending a great deal of time and money. The use of the sky as a measure to solve this problem has become a reality. However, airplanes that require airstrips and noisy helicopters are difficult to use in cities. As a solution, PAVs and UAMs that generate low noise and enable vertical takeoff and landing using electric energy, motor, hybrid, and hydrogen energy, are attracting attention, with its practicality being promoted in many countries. The development of urban environment and technology has led to the emergence of Personal Air Vehicle (PAV), Vertical Takeoff and Landing (eVTOL), and Urban Air Mobility (UAM) for shipping. Though currently at the level of testing, general commercialization of these air transport means is expected in the next five to fifteen years. This study suggests a plan on the application of human factors to the introduction of PAV and UAM.

A Study on User Conversion Intention to Electric Vehicle Using Push-Pull-Mooring Model (Push-Pull-Mooring 모델을 이용한 전기자동차로의 사용자 전환의도에 관한 연구)

  • Jing-Wen Wu;Sok-Tea Kim
    • Korea Trade Review
    • /
    • v.47 no.6
    • /
    • pp.71-96
    • /
    • 2022
  • This research will study the conversion intention of the users in China from fuel vehicle to new energy vehicles through the empirical methods. To this end, a questionnaire survey was conducted with car users as the object, combined with the theory of user migration and the PPM model to analyze the impact of fuel vehicle users' conversion intention to new-energy vehicles factor. The results showed that purchase experience contains the moderating effect, in which perceived risk and switching costs had a greater impact on the groups without purchase experience, whereas social identity, perceived value, personal attitude, and willingness to switch had a greater impact on groups with the purchase experience. Among all five factors, perceived risk had no discernible impact on the switching intention, but social identity, perceived value, attitude toward switching, and switching costs all had discernible impact on the switching intention. This study expects to come out with sustainable advises for the future growth of new energy vehicles from the study of car users' switching intention and the collective difference test of purchasing experience.

The performance of inductive power collector used for railway vehicle system (궤도 차량용 유도 급전/집전 장치의 특성평가)

  • Han, K.H.;Baek, B.S.;Baek, S.H.;Kwon, S.Y.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.188-190
    • /
    • 2006
  • This paper suggests the inductive power collector using electromagnetic induction for railway vehicle such as the PRT(Personal Rapid Transit) system. Some ideas for inductive power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to mount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as leakage reactance and magnetizing reactance. This paper will study for some performance of traditional transformer from equivalent circuit considering leakage reactance.

  • PDF

The characteristic of IPT system used for PRT vehicle by various air-gap (공극변화에 따른 소형궤도차량 유도전력급전 시스템의 특성)

  • Han, K.H.;Lee, B.S.;Baek, S.H.;Kwon, S.Y.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1087-1088
    • /
    • 2006
  • In this paper, the inductive power collector using electromagnetic Induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance.

  • PDF

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

The effect of wearing a helmet on head injury risks among personal mobility vehicle riders: A study of patients who visited a regional emergency medical center due to traffic accidents (개인형 이동수단별 헬멧 착용 유무가 두부 손상에 미치는 영향: 일개 권역응급의료센터에 교통사고로 내원한 환자를 대상으로)

  • So-Yeon An;Yong-Joon Kim;Kyoung-Yul Sim;Kyoung-Youl Lee
    • The Korean Journal of Emergency Medical Services
    • /
    • v.27 no.2
    • /
    • pp.7-17
    • /
    • 2023
  • Purpose: This study aimed to identify the factors that contribute to head injuries among drivers of personal mobility devices and provide insights into safety perceptions. Methods: This retrospective study analyzed data of 221 trauma patients obtained from electronic medical records and the National Emergency Department Information System (NEDIS) over one year, from August 1, 2021, to July 31, 2022. The patients, all in their 20s and 30s, presented to a single emergency medical center following personal mobility device accidents (motorcycles, electric scooters, and bicycles). Results: Among motorcycle riders, 18.2% were not wearing helmets, while the percentage of e-scooter riders not wearing helmets was 87.5%. Wearing a helmet was associated with a 71.2% lower likelihood of head injuries (OR=0.288, CI=0.163 to 0.509, p=0.000). Of the personal mobility devices, motorcycles had a 0.431 times lower odds ratio for head injury compared to e-scooters (p=0.009), and there was no significant difference between e-scooters and bicycles (p=0.776). Conclusion: It is imperative to strengthen safety regulations by mandating helmet use for riders of personal mobility devices. A system to enhance driving enforcement for electric scooters, which are increasingly popular among young adults, should also be established.