• 제목/요약/키워드: perplexity

검색결과 37건 처리시간 0.025초

언어 정보가 반영된 문장 점수를 활용하는 삭제 기반 문장 압축 (Deletion-Based Sentence Compression Using Sentence Scoring Reflecting Linguistic Information)

  • 이준범;김소언;박성배
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.125-132
    • /
    • 2022
  • 문장 압축은 원본 문장의 중요한 의미는 유지하면서 길이가 축소된 압축 문장을 생성하는 자연어처리 태스크이다. 문법적으로 적절한 문장 압축을 위해, 초기 연구들은 사람이 정의한 언어 규칙을 활용하였다. 또한 시퀀스-투-시퀀스 모델이 기계 번역과 같은 다양한 자연어처리 태스크에서 좋은 성능을 보이면서, 이를 문장 압축에 활용하고자 하는 연구들도 존재했다. 하지만 언어 규칙을 활용하는 연구의 경우 모든 언어 규칙을 정의하는 데에 큰 비용이 들고, 시퀀스-투-시퀀스 모델 기반 연구의 경우 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 이를 해결할 수 있는 방법으로 사전 학습된 언어 모델인 BERT를 활용하는 문장 압축 모델인 Deleter가 제안되었다. Deleter는 BERT를 통해 계산된 perplexity를 활용하여 문장을 압축하기 때문에 문장 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않다는 장점이 있다. 하지만 Deleter는 perplexity만을 고려하여 문장을 압축하기 때문에, 문장에 속한 단어들의 언어 정보를 반영하여 문장을 압축하지 못한다. 또한, perplexity 측정을 위한 BERT의 사전 학습에 사용된 데이터가 압축 문장과 거리가 있어, 이를 통해 측정된 perplexity가 잘못된 문장 압축을 유도할 수 있다는 문제점이 있다. 이를 해결하기 위해 본 논문은 언어 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 계산에 반영하는 방법을 제안한다. 또한 고유명사가 자주 포함되어 있으며, 불필요한 수식어가 생략되는 경우가 많은 뉴스 기사 말뭉치로 BERT를 fine-tuning하여 문장 압축에 적절한 perplexity를 측정할 수 있도록 하였다. 영어 및 한국어 데이터에 대한 성능 평가를 위해 본 논문에서 제안하는 LI-Deleter와 비교 모델의 문장 압축 성능을 비교 실험을 진행하였고, 높은 문장 압축 성능을 보임을 확인하였다.

문장 음성 인식을 위한 VCCV기반의 언어 모델 (A Language Model based on VCCV of Sentence Speech Recognition)

  • 박선희;홍광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2419-2422
    • /
    • 2003
  • To improve performance of sentence speech recognition systems, we need to consider perplexity of language model and the number of words of dictionary for increasing vocabulary size. In this paper, we propose a language model of VCCV units for sentence speech recognition. For this, we choose VCCV units as a processing units of language model and compare it with clauses and morphemes. Clauses and morphemes have many vocabulary and high perplexity. But VCCV units have small lexicon size and limited vocabulary. An advantage of VCCV units is low perplexity. This paper made language model using bigram about given text. We calculated perplexity of each language processing unit. The perplexity of VCCV units is lower than morpheme and clause.

  • PDF

문장음성인식을 위한 VCCV 기반의 효율적인 언어모델 (Efficient Language Model based on VCCV unit for Sentence Speech Recognition)

  • 박선희;노용완;홍광석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.836-839
    • /
    • 2003
  • In this paper, we implement a language model by a bigram and evaluate proper smoothing technique for unit of low perplexity. Word, morpheme, clause units are widely used as a language processing unit of the language model. We propose VCCV units which have more small vocabulary than morpheme and clauses units. We compare the VCCV units with the clause and the morpheme units using the perplexity. The most common metric for evaluating a language model is the probability that the model assigns the derivative measures of perplexity. Smoothing used to estimate probabilities when there are insufficient data to estimate probabilities accurately. In this paper, we constructed the N-grams of the VCCV units with low perplexity and tested the language model using Katz, Witten-Bell, absolute, modified Kneser-Ney smoothing and so on. In the experiment results, the modified Kneser-Ney smoothing is tested proper smoothing technique for VCCV units.

  • PDF

문장음성인식을 위한 VCCV 기반의 언어모델과 Smoothing 기법 평가 (Language Model based on VCCV and Test of Smoothing Techniques for Sentence Speech Recognition)

  • 박선희;노용완;홍광석
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.241-246
    • /
    • 2004
  • 본 논문에서는 언어모델의 언어처리 단위로 VCCV(vowel consonant consonant vowel) 단위를 제안하구 기존의 언어처리 단위인 어적 형태소 단위와 비교한다. 어절과 형태소는 어휘수가 많고 높은 복잡도를 가진다. 그러나 VCCV 단위는 작은 사전과 제한된 어휘를 가지므로 복잡도가 적다. 언어모델 구성에 smoothing은 반드시 필요하다. smoothing 기법은 정확한 확률 예측이 불확실한 데이터가 있을 때 더 나은 확률 예측을 위해 사용된다. 본 논문에서는 형태소, 어절, VCCV 단위에 대해 언어모델을 구성하여 복잡도를 계산하였다. 그 결과 VCCV 단위의 복잡도가 형태소나 어절보다 적게 나오는 것을 볼 수 있었다. 복잡도가 적게 나온 VCCV를 기반으로 N-gram을 구성하고 Katz. Witten-Bell, absolute, modified Kneser-Ney smoothing 등의 방법을 이용한 언어 모델에 대해 평가하였다. 그 결과 VCCV 단위의 언어모델에 적합한 smoothing 기법은 modified Kneser-Ney 방법으로 평가되었다.

사전학습 언어모델의 Perplexity에 기반한 Zero-shot 어휘 의미 모델 (Zero-shot Lexical Semantics based on Perplexity of Pretrained Language Models)

  • 최형준;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.473-475
    • /
    • 2021
  • 유의어 추천을 구현하기 위해서는 각 단어 사이의 유사도를 계산하는 것이 필수적이다. 하지만, 기존의 단어간 유사도를 계산하는 여러 방법들은 데이터셋에 등장하지 않은 단어에 대해 유사도를 계산 할 수 없다. 이 논문에서는 이를 해결하기 위해 언어모델의 PPL을 활용하여 단어간 유사도를 계산하였고, 이를 통해 유의어를 추천했을 때 MRR 41.31%의 성능을 확인했다.

  • PDF

BERT 기반 2단계 분류 모델을 이용한 알츠하이머병 치매와 조현병 진단 (BERT-based Two-Stage Classification Models for Alzheimer's Disease and Schizophrenia Diagnosis)

  • 정민교;나승훈;김고운;신병수;정영철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.558-563
    • /
    • 2021
  • 알츠하이머병 치매와 조현병 진단을 위한 2단계 분류 모델을 제안한다. 정상군과 환자군의 발화에 나타난 페어 언어 모델 간의 Perplexity 차이에 기반한 분류와 기존 단일 BERT 모델의 미세조정(fine-tuning)을 이용한 분류의 통합을 시도하였다. Perplexity 기반의 분류 성능이 알츠하이머병, 조현병 모두 우수한 결과를 보임을 확인 하였고, 조현병 분류 모델의 성능이 소폭 증가하였다. 향후 설명 가능한 인공지능 기법을 적용에 따른 성능 향상을 기대할 수 있었다.

  • PDF

BART 기반 문서 요약을 통한 토픽 모델링 성능 향상 (Performance Improvement of Topic Modeling using BART based Document Summarization)

  • 김은수;유현;정경용
    • 인터넷정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.27-33
    • /
    • 2024
  • 정보의 증가 속에서 학문 연구의 환경은 지속적으로 변화하고 있으며, 이에 따라 대량의 문서를 효과적으로 분석하는 방법의 필요성이 대두된다. 본 연구에서는 BART(Bidirectional and Auto-Regressive Transformers) 기반의 문서 요약 모델을 사용하여 텍스트를 정제하여 핵심 내용을 추출하고, 이를 LDA(Latent Dirichlet Allocation) 알고리즘을 통한 토픽 모델링의 성능 향상 방법을 제시한다. 이는 문서 요약을 통해 LDA 토픽 모델링의 성능과 효율성을 향상시키는 접근법을 제안하고 실험을 통해 검증한다. 실험 결과, 논문 데이터를 요약하는 BART 기반 모델은 Rouge-1, Rouge-2, Rouge-L 성능 평가에서 각각 0.5819, 0.4384, 0.5038의 F1-Score를 나타내어 원문의 중요 정보를 포착하고 있음을 보인다. 또한, 요약된 문서를 사용한 토픽 모델링은 Perplexity 지표를 통한 성능 비교에서 원문을 사용한 토픽 모델링의 경우보다 약 8.08% 더 높은 성능을 보인다. 이는 토픽 모델링 과정에서 데이터 처리량의 감소와 효율성 향상에 기여한다.

토픽 모델링을 이용한 건설현장 추락재해 분석 (Falling Accidents Analysis in Construction Sites by Using Topic Modeling)

  • 류한국
    • 한국융합학회논문지
    • /
    • 제10권7호
    • /
    • pp.175-182
    • /
    • 2019
  • 본 연구는 기계학습 기법 중 토픽 모델링을 활용하여 건설현장에서 발생하는 추락재해에 대한 토픽을 분류하고 각 토픽에 따른 재해요인을 분석하였다. 잠재 디리클레 할당 기반의 토픽 모델링을 적용하기 위해 텍스트 데이터의 전처리를 하였고 Perplexity 점수로 평가하여 모형의 신뢰성을 높였다. 각 토픽에서 공통으로 도출된 추락재해의 대부분은 소규모 사업장에 속한 일용직 작업자들에게 발생하였다. 추락재해의 대부분의 원인은 안전장비 미착용, 현장 정리 정돈 미흡, 안전장비의 성능 및 착용 상태로 인해 제대로 작동하지 않은 것으로 판단되었다. 추락재해를 예방하고 절감하기 위해서는 소규모 사업장에 맞는 안전교육과 작업장의 정리 정돈과 개인 안전장비의 적절한 착용 상태 및 성능을 확인하는 것이 중요한 것으로 도출되었다.

언어 정보를 반영한 문장 점수 측정 기반의 문장 압축 (Sentence Compression based on Sentence Scoring Reflecting Linguistic Information)

  • 이준범;김소언;박성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.389-392
    • /
    • 2021
  • 문장 압축은 원본 문장의 중요한 의미를 보존하는 짧은 길이의 압축 문장을 생성하는 자연어처리 태스크이다. 문장 압축은 사용자가 텍스트로부터 필요한 정보를 빠르게 획득할 수 있도록 도울 수 있어 활발히 연구되고 있지만, 기존 연구들은 사람이 직접 정의한 압축 규칙이 필요하거나, 모델 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 사전 학습된 언어 모델을 통한 perplexity 기반의 문장 점수 측정을 통해 문장을 압축하여 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않은 연구 또한 존재하지만, 문장 점수 측정에 문장에 속한 단어들의 의미적 중요도를 반영하지 못하여 중요한 단어가 삭제되는 문제점이 존재한다. 본 논문은 언어 정보 중 품사 정보, 의존관계 정보, 개체명 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 측정에 반영하는 방법을 제안한다. 또한 제안한 문장 점수 측정 방법을 활용하였을 때 문장 점수 측정 기반 문장 압축 모델의 문장 압축 성능이 향상됨을 확인하였으며, 이를 통해 문장에 속한 단어의 언어 정보를 문장 점수 측정에 반영하는 것이 의미적으로 적절한 압축 문장을 생성하는 데 도움이 될 수 있음을 보였다.

텍스트 마이닝을 이용한 4차 산업 연구 동향 토픽 모델링 (Topic Modeling on Research Trends of Industry 4.0 Using Text Mining)

  • 조경원;우영운
    • 한국정보통신학회논문지
    • /
    • 제23권7호
    • /
    • pp.764-770
    • /
    • 2019
  • 본 연구에서는 "4차 산업"과 관련된 논문들의 세부 연구 주제를 파악하기 위하여 텍스트 마이닝 기법을 이용하여 논문들을 분석하였다. 이를 위하여 2016년부터 2019년까지 한국학술지인용색인(KCI)에서 "4차 산업"이라는 키워드로 논문을 검색하여 총 685편의 논문을 수집하였다. 논문 수집을 위해서는 Python 기반의 웹 스크랩핑 프로그램을 사용하였으며, 자료 분석을 위해서는 R 언어로 구현된 LDA 알고리즘 기반의 토픽 모델링 기법들을 활용하였다. 수집된 논문들에 대한 Perplexity 분석 결과, 9가지 토픽이 최적으로 결정되었고 수집된 논문들의 9가지 대표 토픽들을 Gibbs 샘플링 방법을 사용하여 추출하였다. 분석 결과, 인공지능, 빅데이터, 사물인터넷, 디지털, 네트워크 등이 상위 주요 기술들로 나타났으며, 산업, 정부, 교육 현장, 일자리 등 4차 산업과 관련한 다양한 분야에서 주요 기술들로 인한 변화에 대한 연구들이 이루어져 왔음을 확인할 수 있었다.