• Title/Summary/Keyword: permeability distribution

Search Result 335, Processing Time 0.025 seconds

A Study on the Room Temperature Properties of Domestic Molding Sand depending on the Variations of Sand Grain Distribution and Grain Shape. (국산주물사(國産鑄物砂)의 입도분포(粒度分布)와 입형(粒形)에 따른 상온성질(常溫性質)에 관(關)한 연구(硏究))

  • Kang, Min-Jeon;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 1984
  • Green compressive strength, permeability, deformation, flowability, compactability and green hardness values at room temperature are dependable on the grain distribution and grain shape. The results obtained under constant moisture (4% for sand) and bentonite (8% for sand) were as follows; 1. With decreasing grain size, surface area of sand grain was increased. 2. With decreasing grain size, coefficient of angularity was increased. 3. As surface area increased from $8926.43cm^2$ to $21211.16cm^2$ , green compressive strength was increased from $210.93\;g/cm^2$ to $449.98\;g/cm^2$, hardness was increased from 76.7 to 82.3, but permeability was decreased from $411.7\;{\frac{\;cc\;{\cdot}\;cm\;}{atm\;{\cdot}\;cm^2\;{\cdot}\;min.}}$ to $113.7\;{\frac{\;cc\;{\cdot}\;mm\;}{atm\;{\cdot}\;cm^2\;{\cdot}\;min.}}$ 4. As surface area increased from $8926.43\;cm^2$ to $21211.16\;cm^2$, flowability was decreased from 82.3% to 80.8%, deformation was decreased from $67.1\;cm\;{\times}\;10^{-3}$ to $54.6\;cm\;{\times}\;10^{-3}$, but compactability was increased from 44.8% to 54.3%. 5. Room temperature properties of molding sand were affected by variation of surface area.

  • PDF

Current Distribution and Effective Resistance in the Rail of a Distributed-type Railgun (분포형 레일건 레일에서의 전류분포 및 실효저항)

  • 임달호;구태만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.694-701
    • /
    • 1988
  • Distributed-type railguns are designed to maintain the armature current and the length between the armature and the current-feed region nearly constant with time. This paper deals with factors affecting current distribution, effective resistance and effective skin depth in the rail of a distributed-type railgun. Analytical solutions for the current distributions and resistance in the rail are presented for a simple two-dimensional model under steady-state contions. For diffusion limited current, it is found that effective rail resistance is proportional to the square root of the relative velocity, the permeability of the rail and the length between the armature and that effective skin depth of the rail is proportional to the square root of the length and inversely proportional to the square root of the permeability, the conductivity and the velocity.

Quality analysis of Reconstituted tobacco ( I ) - On the Physical and Structural properties - (판상엽 품질 특성 분석 (제1보) - 물리적ㆍ구조적 특성에 관하여 -)

  • 한영림;나도영;김삼곤;김근수;강영희
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • A comparative analysis of characteristics of domestic and foreign reconstituted tobacco based on papermaking was conducted to evaluate the quality of reconstituted tobacco and to utilize as basic data for improvement of domestic reconstituted tobacco. In the formation, which is key factor to quality and physical properties of product, foreign reconstituted tobacco has better uniform formation than those of domestic one. These result was attributed to distribution of large floc size in the domestic one unevenly. In the fiber morphology, domestic reconstituted tobacco has larger average fiber length and width than those of foreign one. They indicated that fiber morphology of domestic one will exert structural properties of paper such as formation and permeability. Tensile strength of domestic one has lower than those of foreign one by basis weight. In the air permeability, domestic one was remarkably reduced because base web was over sized. It also will affect the combustibility of reconstituted tobacco. In summary, we conclude that the physical and structural properties of domestic reconstituted tobacco result in quality deviations compared with foreign reconstituted tobacco.

Preparation and Properties of Ni-Zn Ferrite by Coprecipitation Method (공침법에 의한 Ni-Zn Ferrite의 제조 및 물성연구)

  • Jung Goo Eun;Koh Jae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.338-342
    • /
    • 2004
  • Ni-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal nitrates, Fe($NO_3$)$_3$$9H_2$O, Ni($NO_3$)$_2$$6H_2$O, Zn($NO_3$)$_2$$6H_2$O to make a high permeability material. The composition of the ferrite powder was $Fe_2$$O_3$ 52 mol%, NiO 14.4 mol%, ZnO 33.6 mol%. Ni-Zn ferrite powder was compounded by precipitating metal nitrates with NaOH in vessel at the synthetic temperature of $90^{\circ}C$ for 8 hours. Calcination temperature and sintering temperature were $700^{\circ}C$ and $1150^{\circ}C$$1250^{\circ}C$, respectively, for 2 hours. And the other ferrite powder was also prepared by the wet ball milling that was to be mixed the metal oxides as same as the above chemical composition. We studied the properties of the powder and the electromagnetic characteristics of the sintered cores obtained from there two different processes. Wet direct process produced smaller particle size with narrower distribution of the size and more purified ferrite whose sintered cores had high permeability and high magnetization.

Effect of Steel Fiber Distribution in Steel Fiber-reinforced Concrete on Surface Electrical Resistivity (강섬유 보강콘크리트의 강섬유 분산이 표면전기저항에 미치는 영향)

  • Kim, Seong Do;Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.106-113
    • /
    • 2013
  • One of feasible non-destructivity test methods for evaluation of concrete permeability is the measurement of surface resistivity. But the application to steel fiber-reinforced concrete has been limited because mis-evaluation could be caused by the steel fibers in concrete. In this study, the effect of fiber distribution on surface electrical resistivity of steel fiber-reinforced concrete was investigated through experimental program. Resistivity was measured three times on four surfaces in three rectangular and circular specimens with 0.5%, 1% and 1.5% steel fibers by volume and compared each other. The results obtained from circular specimens were consistent compared to those from rectangular specimens. And the results demonstrated that the effect of fiber distribution on surface resistivity was not significant compared to that of mixing ratio of steel fibers. In conclusion, this non-destructive testing method using measurement of surface resistivity could be used for SFRC within 0.5% steel fibers by volume.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.

Influence of Parameter Uncertainty on Petroleum Contaminants Distribution in Porous Media

  • Li, J.B.;Huang, G.H.;Zeng, G.M.;Chakma, A.;Chen, Z.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.627-630
    • /
    • 2002
  • A methodology based on factorial design and Motto Carlo methods is developed and implemented for incorporating uncertainties within a multiphase subsurface flow and transport simulation system. Due to uncertainties in intrinsic permeability and longitudinal dispersivity, the predicted output is also uncertain based on the well-developed multiphase compositional simulator. The simulation results reveal that the uncertainties in input parameters pose considerable influences on the predicted output, and the mean and variance of permeability will have significant impacts on the modeling output. The proposed method offers an effective tool for evaluating uncertainty in multiphase flow simulation system.

  • PDF

Probabilistic Seepage Analysis by the Finite Element Method Considering Spatial Variability of Soil Permeability (투수계수의 공간적 변동성을 고려한 유한요소법에 의한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.93-104
    • /
    • 2011
  • In this paper, a numerical procedure of probabilistic steady seepage analysis that considers the spatial variability of soil permeability is presented. The procedure extends the deterministic analysis based on the finite element method to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil permeability. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of soil foundation beneath water retaining structure with a single sheet pile wall. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the soil permeability in seepage assessment for a soil foundation beneath water retaining structures.

Preparation and Physical Properties of Hydrogle Lens Containing N,N-Dimethylacrylamide (N,N-Dimethylacrylamide를 포함한 하이드로젤 렌즈의 제조 및 물리적 특성)

  • Kim, Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.761-765
    • /
    • 2010
  • Poly (N,N-dimethylacrylamide) is very useful in various fields due to its remarkable properties, such as water solubility and biocompatibility. This study used N,N-dimethylacrylamide with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (N-vinyl-2-pyrrolidone) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical properties of the copolymerized polymer showed that the water content was 36 - 42%, refractive index was 1.433 - 1.426 and visible ray transmittance 90 - 91% while the oxygen permeability showed a distribution between 13.1 and $21.29{\times}10^{-11}(cm^2/sec)$ ($mlO_2/mL{\times}mmHg$). The measurement showed that the increased amount of oxygen permeability of the copolymer measured using the polarographic method range between 11.0% and 80.5%. Based on the results of this study, the produced copolymer is suitable for use as a material to high oxygen permeability hydrogel lenses.

Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography

  • Suzuki Koichi;Nakata Eiji;Minami Masayuki;Hibino Etsuhisa;Tani Tomonori;Sakakibara Jyunichi;Yamada Naouki
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.