• 제목/요약/키워드: permanent strain

검색결과 94건 처리시간 0.028초

재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성 (Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process)

  • 송창섭;김명환;김기범;박오현
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

뉴질랜드 크라이스트처어치 지진에 의해 발생된 영구지반변형과 매설된 상수도관 성능평가 (Permanent Ground Deformation induced by Christchurch Earthquake and Estimation of Underground Water Pipeline Performance in New Zealand)

  • 전상수
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4201-4207
    • /
    • 2015
  • 본 연구에서는 최근 뉴질랜드의 Christchurch 지역의 2011년 2월 22일의 지진규모(Mw) 6.2 지진발생 후 얻어진 데이터를 이용하여 지진에 의한 지하 상수도관 시스템의 성능에 주안점을 두고 연구를 수행하였다. 이 논문은 액상화로 인하여 발생된 영구지반변형지역과 서로 다른 재질의 상수도관에 따라 1 km 당 손상갯수로 산정되는 손상율을 액상화 지역에서의 지진발생 전후에 얻어진 높은 해상도의 라이다데이터로부터 계산된 부등침하와 횡방향 지반변형률의 관계를 통하여 산정하였다. 본 연구에서는 영구지반변형에 따른 매설된 상수도관의 지진성능을 요약하여 설명하였으며 연구결과 연성이 매우 큰 폴리에틸렌 상수도관이 매우 우수한 지진성능을 가지고 있음을 알 수 있다.

재결정과 결정성장 유기 소성현상의 해석 (Analysis of Recrystallization and Grain Growth Induced Plasticity)

  • 김세종;서동우;김성준;한흥남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.107-110
    • /
    • 2007
  • It has been reported that the permanent strain could happen during recrystallization and grain growth even under the externally applied stress which is much lower than yield stress. In this study, we performed dilatometry experiments under the various compressive stresses and measured the amount of recrystallization and grain growth induced permanent strain. A new constitutive equation based on the concept of boundary migration induced plasticity was suggested to describe the recrystallization and grain growth induced plasticity. This equation was verified by comparing the calculated values with dilatometric experimental data under the various compressive stresses.

  • PDF

Mat 묘(苗)의 크리이프 및 회복특성(回復特性) (Creep and Recovery Properties of Mat-type Rice Seedlings)

  • 허윤근;이철기;김만수
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.181-187
    • /
    • 1989
  • The mechanical and rheological properties of agricultural materials which influence the machine design or handling are not completely understood. Agricultural materials do not react in a purely elastic manner, and their responses when subjected to stress and strain appear a combination of elastic and viscous behavior. Many researchers have studied the mechanical and rheological properties of the various agricultural materials, but those properties are available mostly for foreign varieties of agricultural products. Rheological properties of rice seedlings become important to formulate the principles governing their mechanical behavior. The objectives of this study were to experimentally determine the creep and recovery behavior of rice seedlings of one japonica-type and one Indica x japonica hybrid in the transplanting age. The results of this study are summarized as follows; 1. The compression creep and recovery behavior of mat-type seedlings could be described by 4-element Burger's model. 2. The steady-state creep appeared at the stress larger than 0.8 MPa and the logarithmic creep appeared at the stress smaller than 0.8 MPa. 3. In the compression creep test of the rice seedlings, the instantaneous elastic modulus of Burger's model showed the range from 20 to 40 MPa. The higher value of absolute viscosity for the rice seedling explained that the rice seedlings were viscoelastic materials. 4. In the recovery test of the rice seedlings, there was a tendency that the higher permanent strain of all samples was observed under the smaller stress being appeared, and the larger permanent strain in Dongjin was observed than in Samkang.

  • PDF

줄기 엽채소의 기계적 파지시 리올로지 특성 (Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine)

  • 전현종;김상헌
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

영구자석기기의 히스테리시스 특성해석을 위한 Preisach 모델 (Preisach Model for Analyzing the Permanent Magnet System with Hysteresis Characteristics)

  • 박관수;한송엽;이기식;정현교
    • 한국자기학회지
    • /
    • 제2권2호
    • /
    • pp.140-144
    • /
    • 1992
  • 강자계 내에서 영구자석의 자화량은 변한다. 따라서 영구자석을 포함하는 자기 시스템의 정확한 해석을 위해서는 영구자석의 자화량의 변화를 고려해 주어야 한다. 그런데 영구자석의 자화량 은 히스테리시스 특성을 가지고 변하므로 단순한 수식으로 표현이 되지 않으므로 종래의 방법으로는 수치모사가 불가능하다. 본 논문에서는 Preisach 모델과 결합된 유한요소법으로 히스테리시스 특성을 갖는 영구자석의 자화량을 수치모사하였다. 보자력과 잔류자속밀도 값이 다른 두 자석을 서로 접근시 킬 때 작용하는 힘을 본 방법으로 계산한 값과 strain gauge type load cell로 측정한 값이 잘 일치 함을 보임으로써, 본 방법이 자화량의 변화가 발생되는 영구자석기기의 해석에 적합함을 보였다.

  • PDF

영구자석 형상 변형을 통한 동기발전기 고조파 저감 (Harmonic Reduction of Synchronous Generator by Permanent Magnet Shape Deformation)

  • 변범석;박의종;김용재
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1081-1088
    • /
    • 2022
  • 동기발전기의 고조파는 철손과 동손을 증가시켜 발열의 원인이 된다. 이를 감소시키기 위하여 전기자의 권선법을 분포권, 단절권을 이용하여 고조파를 감소시키는 방법이 있으나 본 논문에서는 영구자석의 형상을 기존에 연구되었던 방법이 아닌 새로운 형상 변형을 통해 고조파를 감소시키며 기전압의 파형을 개선하고자 한다. 형상 변형 방법으로 영구자석의 양단을 절단하고 설정값에 따라 영구자석의 면적을 증가, 감소시켜 공극의 길이를 조절한다. 이때 자속밀도의 분포를 다르게 하여 이에 따른 기전압과 왜형률을 비교하였다. 이를 통해 논문에 기술된 영구자석의 형상 변화 모델들을 비교하고 가장 효과적인 변형 방법을 나타냈다.

Effect of Bending Test Procedure on the Degradation Behavior of Critical Current in ReBCO Coated Conductor Tapes

  • Shin, H.S.;Dedicatoria, M.J.;Lee, N.J.;Oh, S.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권4호
    • /
    • pp.12-15
    • /
    • 2009
  • The $I_c$ degradation behavior of critical current in differently processed YBCO and SmBCO CC tapes with IBAD template has been investigated. It has been known that the residual strain in the CC tape will influence the shape of the $I_c$-strain window; $I_c$ may show a peak value if there exist a residual strain induced in the tape during manufacturing. The difference of residual strain may be resulted from the adopted different deposition techniques. In this study, bending test of CC tapes has been done using the Goldacker bending test rig which can produce both compressive and tensile bending strain continuously or alternately to the sample. For SmBCO CC tapes, in continuous compressive bending test, $I_c$ showed a minimal increase and did not degrade up to the largest strain that can be applied using the bending rig equivalent to 1.15% based on the sample thickness. However, in the case of alternate application of compressive and tensile bending strain, $I_c$ showed a larger degradation and a lower reversible limit when compared with the case of continuous application of the bending strain. When $I_c$ started to degrade significantly at the tension side, the reversibility ended, also at the compression side which is resulted from the permanent deformation like delamination or cracks that was induced due to tensile bending strain.

TIME-DEPENDENT DEFORMATION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Pae Ahran;Jeong Mi-Sook;Kim Sung-Hun
    • 대한치과보철학회지
    • /
    • 제43권6호
    • /
    • pp.717-726
    • /
    • 2005
  • Statement of problem. One of the common problems of provisional crown and fixed partial denture materials is that when they are subjected to constant loads for a long period of time, they exhibit a dimensional change (creep). Purpose. The aim of this study was to investigate the viscoelastic behaviour of polymer-based provisional crown and fixed partial denture materials with time at constant compressive load. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Temphase, Luxatemp) and one monomethacrylate-based material (Trim) were selected. Dimensional changes of the specimens were recorded by a LVDT to evaluate their viscoelastic behavior and creep strain. For all specimens, two loading procedures were used. At first, static compressive stress of 4 MPa was applied for 30 minutes and followed by 1 hour of strain recovery. Then, after 24 hours of water storage, the specimens were loaded again. The creep values between materials were statistically analyzed using one-way ANOVA and multiple comparison $Scheff\acute{e}$ test. Independent samples t-test was also used to identify the difference of creep strain between first and secondary loading conditions at the significance level of 0.05. Results. Following application of the first loading, Trim showed the highest maximum creep strain (32.7%) followed by Luxatemp, Protemp 3 Garant and Temphase, with values of 3.78%, 2.86% and 1.77%, respectively. Trim was significantly different from other materials (P<0.05), while there were no significant differences among Luxatemp, Protemp 3 Garant and Temphase (P>0.05). The highest recovery and permanent set of Trim, were significantly different from those of others (P<0.05). At the secondary loading of the dimethacrylate-based materials, creep deformation, recovery and permanent set decreased and the percentage of recovery increased, while in Trim, all values of the measurements increased. This result showed that the secondary loading at 24 hours produced a significant creep magnitude. Conclusion. The dimethacrylate-based provisional crown and fixed partial denture materials showed significantly higher creep resistance and lower deformation than the monomethacrylate-based material. Thus, monomethacrylate-based materials should not be used in long-term stress-bearing situations.