• Title/Summary/Keyword: permanent magnet synchronous motor (PMSM)

Search Result 395, Processing Time 0.022 seconds

Development of Servo for Small Tracking Radars (소형 추적 레이다용 서보 개발)

  • Lee, Jong-Kuk;Lee, Seok-In;Kim, Jun-Su;Song, Tae-Seong;Eom, Young-Cheol;Ahn, Se-Hwan;Shin, Yu-Jin;Joo, Ji-han;Kwon, Jun-Beom;Kim, Sang-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.21-30
    • /
    • 2022
  • This paper describes the design, manufacture, and testing of servos applicable to small tracking radars. First, Chapter 1 describes the necessity of this study. Chapter 2 describes the development of servos applicable to future tracking radars in small missile systems. Chapter 3 describes the design and test results for current control of brushed DC motors, brushless DC motors, and permanent magnet synchronous motors. And Chapter 4 describes the design and test results for speed control of the test wheel. And in Chapter 5, the results of the previous tests are summarized. In this paper, some pictures were intentionally blurred for security reasons, and the control result of test wheel was described, not the test with the developed gimbals.

Comparative Analysis of Driving Methods According to Electrical Conduction Angle of Inverter for PMSM (영구자석형 동기전동기 구동용 인버터의 통전각에 따른 운전 방식의 비교 분석)

  • Lee, Seung-Yong;Yoon, Duck-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.72-81
    • /
    • 2018
  • In this study, the sinusoidal-wave driving method, six-step driving method, and twelve-step driving method, which can be used in an inverter for permanent-magnet synchronous motors, were simulated, and the results were compared to review their operating performance. These driving methods were classified according to the electrical conduction angle and phase current of the motor. Conventionally, only the transition control technique between the sinusoidal-wave driving method and six-step driving method was studied for the efficiency of the inverter. In this paper, however, comparative analysis was focused on a variety of transition control applications to use the advantages of each driving method. For this purpose, computer simulations for these driving methods were carried out to obtain the motor torque, speed control characteristics, and THD of the motor phase currents. As a result, the sinusoidal-wave driving method showed the best performance in all respects. The six-step driving method has better speed control characteristics than the twelve-step driving method, and the twelve-step driving method has a lower THD of the motor phase currents than the six-step driving method.

Torque Predictive Control for Dynamic Performance Improvement of Clamping Force in EMB for Railroad Cars (철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어)

  • Jang, Yoon;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.174-184
    • /
    • 2017
  • This paper proposes a torque predictive control for dynamic performance improvement of clamping force in electro-mechanical brake (EMB) for railroad cars. In general, pneumatic braking system (PBS) is used for railroad cars. It is sensitive depending on environmental changes and it has increasing idle running time because of slow dynamic response. Additionally, the PBS has low braking efficiency in case braking torque more than standard value is applied to the brake system such as emergency braking. In order to overcome these disadvantages of the PBS, the EMB is used for the railroad cars. The EMB for railroad cars has advantages that increasing the fuel efficiency and design flexibility because it is able to decrease vehicle weight of railroad cars and secure space for design. In this paper, control method for dynamic performance improvement of clamping force in EMB for railroad car is proposed. The effectiveness of the proposed control method is verified by the simulation results.

Robust Control of Permanent Magnet Synchronous Motor Using Disturbance Observer and Sliding Mode Controller (외란관측기와 슬라이딩 모드 제어기를 이용한 영구자석 동기전동기의 강인제어)

  • Lee, Youn-kyu;Ahn, Ho-gyun;Yoon, Tae-sung;Kwak, Gun-pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1660-1670
    • /
    • 2015
  • Many robust controllers have been studied but most are considered in the theoretical point of view and can be used for only specific systems. So, in this paper, a more practical robust controller is proposed based on SMC(sliding mode control) and disturbance observer. The integral sliding mode is used to eliminate the reaching phase and minimizes the steady-state error, and the disturbance observer reduces the chattering due to the switching input for the bounded disturbances. The inevitable chattering of SMC is also removed by replacing the sign function with dead-zone function. The proposed controller has the improved steady-state error and robustness compared to PID controller.

Sensorless Operation of Low-cost Inverters through Square-wave High Frequency Voltage Injection (사각 고주파 주입을 통한 저가형 인버터의 센서리스 운전)

  • Hwang, Sang-Jin;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2022
  • In this paper, the efficiency of a sensorless method with square-wave injection for a low-cost inverter, so called B4 inverter is presented. This inverter comprises only 4 switches to reduce system cost. It is distinguished from the conventional B6 inverter that has 6 of switching elements. The B4 inverter, injected a 1 kHz of harmonic wave, has been modelled using the functions and library in Matlab/Simulink. This paper described each component of sensorless algorithm. Among them, the Notch Filter is used to extract the harmonic component of the phase current and a second-order low-pass filter was used to reduce the ripple of the estimated speed. It is shown through simulation that the rotor angle of a permanent magnet synchronous motor is detected by multiplying the current waveform extracted using the notch filter by the harmonic voltage. The feasibility of the proposed method is shown through Simulink simulation.