• Title/Summary/Keyword: permanent magnet eddy-current loss

Search Result 46, Processing Time 0.02 seconds

Study on the High Efficiency Design through the Loss Reduction of the 110kW Class High-output Density PMSM (110kW급 고출력 밀도형 PMSM의 손실 저감을 통한 고효율 설계에 대한 연구)

  • Jun, Hyun-Woo;Park, Eung-Seok;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.954-959
    • /
    • 2015
  • In this paper, 110kW high output density, high efficiency Permanent Magnet Synchronous Motor which can be applied on tram’s traction system is introduced, along with its output and loss characteristics. The motor model is 2pole 18slot model and its size has been reduced through the high speed for high output density. Especially, structure and retainer sleeve structure is applied to its structure, which is also appropriate for high speed rotation. This kind of structure has eddy current loss problem on the surface of rotor, which must be reduced for high output density design. This study has designed the most optimized additional design parameter in order to improve the output characteristics and efficiency of previous produced 2pole 18 slot 110kW motor model and how the width of airgap affects from the loss perspective is mainly analyzed. Finally, the analysis on the extent of the efficiency improvement effect compared to the previous model has performed through electromagnetic FEM analysis. The influence of airgap flux density distribution has also been thoroughly examined.

Analysis of Efficiency and Loss due to Number of Poles in Magnetic Gears (마그네틱 기어의 극수 변화에 따른 효율 및 손실 분석)

  • Kim, Seung-Hyun;Kim, Dong-Wook;Lee, Do-Yeop;Gim, Chan-Seung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1023-1028
    • /
    • 2018
  • Mechanical gears driven by direct contact have problems including noise, vibration and heat. In order to, solve these problems, magnetic gears having a non-contact magnetic coupling have been proposed. Through various studies on magnetic gears, we found that losses are changed when the number of magnetic poles varies in the same gear ratio. For this reason, research team expect the iron loss of the magnetic gear and the Eddy current loss of the permanent magnet will have a certain tendency depending on the number of poles. This paper identified the magnetic gear's loss tendency according to the number of poles, and laid the basis for efficiency improvement design.

Friction of Superconductor Bearing (초전도 베어링의 마찰계수 측정)

  • ;J. R Hull
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.237-239
    • /
    • 2003
  • A high-temperature superconductor (HTS) journal bearing was studied for loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35$\times$25$\times$10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings < 10 mT on the stainless part. The rotational drag was measured over the same speed range. Results indicate that the 10 mT design criteria for magnetic field on the stainless part of the cryochamber is too high.

  • PDF

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

A Study on Design of 50kW PMSG for Micro-grid Application (마이크로그리드용 50kW급 PMSG 설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Kim, Hyoung-Gil;Chang, Young-Hak;Park, Tae-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.527-536
    • /
    • 2014
  • In this paper, the 50kW aerogenerator which is applicable to the microgrid was designed and analyzed by using commercial simulation program Maxwell 2D. Particularly, the suggested PMSG to reduce the cogging torque introduced the offset and skew concept. The suggested optimal value of offset and skew was decided by 2mm and 60 degree of electric angle. The simulation results of the PMSG when load operation condition showed the average harmonic distortion 1.3%, voltage 322.41V, current 94.95A, and iron loss 9.73W, eddy current loss 73.68W, copper loss 3.52kW. The capacity of aerogenerator calculated 61.56kW, and the suggested design process can be applied to higher capacity generator.