• Title/Summary/Keyword: permanent magnet DC motor

Search Result 243, Processing Time 0.026 seconds

Optimal Design of Permanent Magnet DC Motor Using Parallel Computing Method (병렬 컴퓨팅을 이용한 영구자석 직류전동기의 최적설계)

  • Cho, Myung-Soo;Lee, Cheol-Gyun;Kim, Jae-Kwang;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.649-650
    • /
    • 2006
  • In this paper, finite element analysis (FEA)-based optimization using Internet distributed computing is proposed for the real world and complex optimization such as optimal design of permanent magnet do motor (PMDCM).

  • PDF

Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor (브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과)

  • 전연도;약미진치;이주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.

Design Techniques for reduction of Cogging Torque in Brushless DC Motors used for Electric Power Steering (전기 조향 장치용 BLDC 모터 내의 코깅 토크 저감을 위한 설계 기술 개발)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.106-114
    • /
    • 1998
  • Cogging torque is often a principal source of vibration and control difficulty in permanent magnet motors, especially at low speeds and loads. For example, reduction of cogging torque is an important specification for DC motors used for electric power stee- ring. This paper examines two motor design techniques, stator tooth notching and rotor pole skewing with magnet pole shaping, for reduction of cogging torque, and the effect of each method on the airgap flux, and the use of the Maxwell stress method and Fourier decomposition to calculate the periodic cogging torque. The analyses show that the cogging torque can be nearly eliminated by the suggested designs, with minimal scacrifice of output torque.

  • PDF

Development of Iron Core type Linear Motor for Machine Tool (공작기계용 철심형 니니어모터 기술개발)

  • 정재한;박재완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.33-36
    • /
    • 1997
  • The merits of linear motor are high speed, high acceleration and goad positioning accuracy. In addition, Linear motor for high quality machme tool call for high thrust, high stiffness. In using linear motor we also consider thrust ripple, detent force and thermal behavior. In this research, Iron core type single sided linear DC motor(LDM) is designed which thrust is 6,000 N. To accomplish this design, Various research is hlfilled l~ke the relation of thrust and permanent magnet position angle, the variation of detent force and thrust ripple, dynamic characteristics, and so on.

  • PDF

Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application

  • Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.942-949
    • /
    • 2014
  • We studied about the rotor design change using a Ferrite ring magnet to reduce material cost in the condition of the same stator core design. However, this design direction has many weak points such as the decrease of BEMF, the low maximum output, the irreversible demagnetization characteristics of a permanent magnet and so on. In order to mitigate such disadvantages, an optimization design of the BLDC motor has been developed by changing each design parameter and by improving the electromagnetic structure. In the proposed water pump SPM BLDC motor using Ferrite magnet, the outer and inner diameter of stator is fixed to the value of the conventional IPM BLDC motor using Nd-Fe-B magnet. The design specification requirements should be satisfied with the same output power and efficiency characteristics in the same dimension. As a result of this study, the design comparison results considering driving performances and material cost are represented. Through the actual experiment with the prototype of the designed motor, the simulations results are verified.

Development of a Sensorless Drive for Interior Permanent Magnet Brushless DC Motors (영구자석 매입형 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • 여형기;홍창석;이광운;박정배;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • This paper describes an indirect sensing method for the rotor flux position of interior permanent magnet (IPM) brushless DC motors. The phase inductances of an IPM motor vary appreciably according to the rotor position. The waveform characteristics of the terminal voltage of IPM brushless DC motors is analysed and a simple and practical method for indirect sensing of the rotor position is proposed. A compact and economical sensorless drive is implemented and tested using a 87c196mc 16-bit one-chip microprocessor. The experimental results show the validity of the proposed method. The drive is applied to drive a compressor of air-conditioner and works well from 1,200 to 6,600 [rpm].

  • PDF

A study on Analysis Technique of Design Parameters for Brushless DC motor (Brushless DC motor의 설계 Parameter 분석 기법에 관한 연구)

  • Maeng, Kyung-Ho;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.6-8
    • /
    • 2004
  • Recently, it is increasing to use more Brushless DC Motor with high energy density permanent magnet and semiconductor control unit for complementing the mechanical defect of Brushed DC Motors. For designing of BLDC Motors are required complex parameters like as rated characteristic, Geometries, B-H curve of magnet and steel materials, winding factor, etc. Moreover, design and manufacturing are difficult because of additional control circuits. Generally, Design parameters are gotten by analysis of Motor which is used. And the design parameters are used to design a new motor. But getting the design parameters through the eyes and experience is limited and it takes a long time. In this paper a method is proposed to efficiently analyze motor design parameters through the No load and Load Test, Back EMF Test, Simulation Analysis and Patent Analysis Method for existing BLDC Motor for a cooling Fan in Vehicle.

  • PDF

The Design of High-power BLDC Motor with Maximum Torque at Low Speed for Ship Propulsion (선박 추진 장치를 위한 저속영역에서 최대토크를 가지는 고출력 BLDC 모터의 설계)

  • Cho, Seung-Hyun;Bin, Jae-Gu;Cho, Soo-Eok;Choi, Chul;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, development of rare earth permanent magnet with the high remanence, high coercivity allows the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to output ripple, vibration, and noise of machine. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, some airgap length and magnet arc that reduce cogging torque are found by finite element method(FEM) and Maxwell stress tensor method. The SPM(Surface Permanent Magnet) type of high-power Brushless DC (BLDC) motor is optimized as a sample model.

Characteristic Analysis on Teeth Parameter of Permanent Magnet DC Motor (영구자석 직류전동기의 회전자 치(齒) Parameter에 따른 특성해석)

  • Kim, Chul-Ho;Bae, Sang-Han;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.133-135
    • /
    • 1996
  • This paper deals with the effect of teeth number variation in permanent Magnet DC motor. As teeth number varies, both flux density distribution and winding pitch are influenced, which is closely related to torque-speed characteristics, output power, and efficiency. In this study, motor design carried out using finite element method, and prototype motors were manufactured to test their performance analysis. In spite of torque ripple due to cogging effect better characteristic of machine using small teeth number was recorded than the motors with large number of rotor teeth. One of that reasons is caused by adopting large coil-length due to large number of teeth, i. e. large coil-pitch.

  • PDF

Efficiency Optimal Design of a Brushless DC Motor Considering the Magnetization Direction of Permanent Magnet (영구자석의 착자방향을 고려한 브러시리스DC 전동기의 효율 최적화 설계)

  • Song, Jeong-Hyun;Kim, Byung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.241-247
    • /
    • 2011
  • This paper is intended to improve efficiency of two-phase BLDC motor using analytical and statistical methods, and then the stability of the starting for the designed model is investigated. The characteristics of the motor according to magnetization directions of permanent magnet are analyzed through the analytical method, and design variables that affect the efficiency are selected. Preliminary optimal design is performed using the analytical method with the design variable. The RSM (Response Surface Method) based on the FEA (Finite Element Analysis) is applied to complement errors of the analytical method. As a result, the optimal design is determined. Finally, the stability of the starting for the optimal designed model is evaluated by analyzing cogging torque, and it is verified through the FEA.