• 제목/요약/키워드: periodontal cell

검색결과 544건 처리시간 0.028초

Calcium sulfate와 혈소판 유래성장인자의 혼합사용이 치주인대세포에 미치는 영향 (The effects of a combination of calcium sulfate and platelet-derived growth factor on periodontal ligament cells in vitro)

  • 김준성;최성호;유윤정;채중규;김종관;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제27권4호
    • /
    • pp.785-804
    • /
    • 1997
  • It was well known that calcium sulfate was biocompatible, resorbed rapidly in the body, had potential as a good barrier membrane. Platelet-derived growth factor(PDGF) was one of polypeptide growth factor that had been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purpose of this study was to evaluate the effects of a combination of calcium sulfate and PDGF on periodontal ligament cells in vitro to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the premolar tooth extracted for the orthodontic treatment. Cells were cultured in ${\alpha}-MEM$ contained with 20% FBS, at the $37^{\circ}C$, 100% of humidity, 5% $Co_2$ incubator. Cells were inoculated and cultured into 96 well culture plate with $1{\times}10^4cells/well$ of ${\alpha}-MEM$ for 1 day. After discarding the medium, those cells were cultured in ${\alpha}-MEM$ contained with 10% FBS alone(control group), in calcium sulfate(calcium sulfate group), in calcium sulfate treated with 15ng/ml of PDGF-BB(calcium sulfate+PDGF group), in ${\alpha}-MEM$ contained with 10% FBS treated with 15ng/ml of PDGF-BB(PDGF group) for 1, 2, 3 day respectively. And then each group was characterized by examining of the cell counting, MTT assay, collagen synthesis. The results were as follows. 1. In the analysis of cell proliferation by cell counting, both calcium sulfate group and calcium sulfate plus PDGF group showed no stastically significant difference compared to control group, but there was stastically significant difference between PDGF group and calcium sulfate group at 1, 2 day(P<0.05). 2. In the analysis of cell proliferation by MTT assay in calcium sulfate extracts, both calcium sulfate group and calcium sulfate plus PDGF group showed no stastically significant difference compared to control group, but there was stastically significant difference between PDGF group and calcium sulfate group at 2, 3 day, and between calcium sulfate plus PDGF group and calcium sulfate group at 2 day(P

  • PDF

홍화자 추출물과 키토산 병용처리에 의한 경조직 재생촉진 효과 (Therapeutic Effects of Safflower Seed Extract and Chitosan on Hard Tissue Regeneration)

  • 정세영;박준봉;권영혁;김성진;박건구
    • Biomolecules & Therapeutics
    • /
    • 제9권4호
    • /
    • pp.244-248
    • /
    • 2001
  • This study was performed to investigate therapeutic effects of Carthami Semen, Paeoniae Raidx extracts and chitosan on the growth and differentiation of human periodontal ligament cell. We found that co-treatment of methanol extracts of Carthami Semen and chitosan significantly increased the growth of human periodontal ligament cell. However, the sigle treatment groups of the extracts showed only 20-30% of the growth increase. Alkaline phosphase activity, one of differentiation markers, was increased approximately 1.5- fold by co-treatment of methanol extract of Carthami Semen and chitosan and calcified nodule formation was also increased at the similar levels as the alkaline phosphatase. But the single treatment groups showed only 20-30% increases. These results suggest that Carthami Semen and chitosan co-treatment can be used efficiently for periodontium regeneration.

  • PDF

전기 자극이 치주인대세포와 치은섬유아세포에 미치는 영향 (Effect of the Electrical Stimulation on the Human Periodontal Ligament Cells and Gingival Fibroblasts)

  • 이욱;박준봉;이만섭;권영혁
    • Journal of Periodontal and Implant Science
    • /
    • 제29권4호
    • /
    • pp.821-838
    • /
    • 1999
  • On the basis of the evidences that electrical stimulation could enhance proliferation and differentiation of bone cells and promote healing and regeneration of bone, this study was performed to investigate the effects of electrical stimulation on human periodontal ligament cells and gingival fibroblasts in vitro, which also have important roles in regeneration of periodontium, and to evaluate the potential of clinical application of electrical stimulation. Human periodontal ligament cells and gingival fibroblasts were primarily cultured from the root surface of extracted premolar and the adjacent gingiva without periodontal diseases. In control group, the cells ($5{\times}10^4$ cells/ml)were incubated only in Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum. In test groups, electrical stimulation was given at the current intensity of $0.25{\mu]A$(test group 1), $1.0{\mu}A$(test group 2), and $2.5{\mu}A$(test group 3) for 12 hours to the same culture media with the control group. After 12 hour exposure of electrical stimulation, the cells were incubated for 2 and a half days(60 hours), and then each group of cells was analyzed for cell proliferation, protein level, and activity of alkaline phosphatase. The results were as follows ; 1. The Rate of cell proliferation of every test group increased significantly in both periodontal ligament cells and gingival fibroblasts, and in periodontal ligament cells, test group 3 showed significantly increased proliferation compared to the other test groups(p<0.05). 2. In the protein levels, neither periodontal ligament cell nor gingival fibroblast showed statistically significant differences between control and test groups. 3. The activity of alkaline phosphatase in periodontal ligament cells increased significantly in all test groups(p<0.05), but there were no significant differences between 3 test groups. In gingival fibroblasts, the activity of alkaline phosphatase increased significantly only in test group 3(p<0.05). From the above results, it is concluded that electrical stimulation may have beneficial effects on the regeneration of destructed periodontal tissue in regard of the stimulation of periodontal ligament cells and gingival fibroblasts as well as electrically stimulated bone formation that has been known, and that electrical stimulation may have the potential of clinical application.

  • PDF

Replicative Senescence of Periodontal Fibroblasts Induces the Changes in Gene Expression Pattern

  • Yi, Tac-Ghee;Jun, Ji-Hae;Min, Byung-Moo;Kim, Moon-Kyu;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제32권1호
    • /
    • pp.35-43
    • /
    • 2007
  • Tooth loss in elderly is mainly caused by alveolar bone loss via severe periodontitis. Although the severity of periodontitis is known to be affected by age, the aging process or the genetic changes during the aging of periodontal tissue cells are not well characterized. In this study, we investigated the effect of in vitro aging on the change of gene expression pattern in periodontal fibroblasts. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDL) were obtained from two young patients and replicative senescence was induced by sequential subcultivation. When more than 90% cells were positively stained with senescence-associated ${\beta},-galactosidase$, those cells were regarded as aged cells. In aged GF and PDL, the level of phosphorylated retinoblastoma (RB) and $p16^{INK4A}$ protein was significantly decreased and increased, respectively. However, the protein level of p53 and p21, well known senescence-inducing genes, did not increase in aged GF and PDL. Although $p27^{Kip1}$ and $p15^{INK4B}$, another cyclin-dependent kinase inhibitors, were reported to be involved in replicative senescence of human cells, they were decreased in aged GF and PDL. Because senescent cells showed flattened and enlarged cell shape and are known to have increased focal adhesion, we examined the protein level of several integrins. Aged GF and PDL showed increased protein level of integrin ${\alpha}2$, ${\alpha}v$, and ${\beta}1$. When the gene expression profiles of actively proliferating young cells and aged cells were compared by cDNA microarray of 3,063 genes and were confirmed by reverse transcription-polymerase chain reaction, 7 genes and 15 genes were significantly and commonly increased and decreased, respectively, in aged GF and PDL. Among them, included are the genes that were known to be involved in the regulation of cell cycle, gene transcription, or integrin signaling. The change of gene expression pattern in GF and PDL was minimally similar to that of oral keratinocyte. These results suggest that $p16^{INK4A}/RB$ might be involved in replicative senescence of periodontal fibroblasts and the change of gene expression profile during aging process is cell type specific.

Association between immunoglobulin G1 against Tannerella forsythia and reduction in the loss of attachment tissue

  • Ardila, Carlos Martin;Olarte-Sossa, Mariana;Guzman, Isabel Cristina
    • Journal of Periodontal and Implant Science
    • /
    • 제44권6호
    • /
    • pp.274-279
    • /
    • 2014
  • Purpose: To evaluate whether the levels of immunoglobulin G (IgG) antibody to Tanerella forsythia are associated with periodontal status. Methods: Patients with a diagnosis of chronic periodontitis were considered candidates for the study; thus 80 chronic periodontitis patients and 28 healthy persons (control group) were invited to participate in this investigation. The presence of T. forsythia was detected by polymerase chain reaction (PCR) analysis using primers designed to target the respective 16S rRNA gene sequences. Peripheral blood was collected from each subject to identify the IgG1 and IgG2 serum antibodies against T. forsythia. All microbiological and immunological laboratory processes were completed blindly, without awareness of the clinical status of the study patients or of the periodontal sites tested. Results: The bivariate analysis showed that lower mean levels of clinical attachment level (CAL) and probing depth were found in the presence of the IgG1 antibody titers against whole-cell T. forsythia; however, only the difference in CAL was statistically significant. In the presence of the IgG2 antibody titers against whole-cell T. forsythia, the periodontal parameters evaluated were higher but they did not show statistical differences, except for plaque. The unadjusted linear regression model showed that the IgG1 antibody against whole-cell T. forsythia in periodontitis patients was associated with a lower mean CAL (${\beta}=-0.654$; 95% confidence interval [CI], -1.27 to -0.28; P<0.05). This statistically significant association remained after adjusting for possible confounders (${\beta}=-0.655$; 95% CI, -1.28 to -0.29; P<0.05). On the other hand, smoking was a statistically significant risk factor in the model (${\beta}=0.704$; 95% CI, 0.24 to 1.38; P<0.05). Conclusions: Significantly lower mean levels of CAL were shown in the presence of the IgG1 antibody titers against whole-cell T. forsythia in periodontitis patients. Thus, the results of this study suggest that IgG1 antibody to T. forsythia may have been a protective factor from periodontitis in this sample.

Porphyromonas gingivalis와 Tannerella forsythia의 응집반응 (Coaggregation between Porphyromonas gingivalis and Tannerella forsythia)

  • 엄흥식;이석우;박재홍
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.265-272
    • /
    • 2006
  • Dental plaque, a biofilm consisting of more than 500 different bacterial species, is an etiological agent of human periodontal disease, It is therefore important to characterize interactions among periodontopathic microorganisms in order to understand the microbial pathogenesis of periodontal disease. Previous data have suggested a synergistic effect of tow major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia in the periodontal lesion. In the present study, to better understand interaction between P. gingivalis and T. forsythia, the coaggregation activity between these bacteria was characterized. The coaggregation activity was observed by a direct visual assay by mixing equal amount (1 ${\times}$ $10^9$)of T. forsythia and P. gingivaJis cells. It was found that the first aggregates began to appear after 5-10 min, and that the large aggregates completely settled within 1 h. Electron and epifluorescence microscopic studies confirmed cell-cell contact between two bacteria. The heat treatment of P. gingivalis completely blocked the activity, suggesting an involvement of a heat-labile component of P. gingivalis in the interaction. On the other hand, heat treatment of T. forsythia significantly increased the coaggregation activity; the aggregates began to appear immediately. The coaggregation activity was inhibited by addition of protease, however carbohydrates did not inhibit the activity, suggesting that coaggregation is a protein-protein interaction. The results of this study suggest that coaggregation between P. gingivalis and T. forsythia is a result of cell-cell physical contact, and that coaggregation is mediated by a heat-labile component of P. gingivalis and T. forsythia component that can be activated on heat treatment.

치주인대세포에 대한 Bone morphogenetic protein-7의 영향 (Effect of BMP-7 on the rat periodontal ligament cell)

  • 김경희;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.289-298
    • /
    • 2005
  • Bone morphogenetic protein-7(BMP-7), a member of the transforming growth factor superfamily, stimulates osteoblast differentiation and bone formation. There are lots of evidences supporting a direct participation of periodontal ligament(PDL) cells on periodontal tissue regeneration. The purpose of this study was to evaluate the effect of recombinant human(rh) BMP-7 on primary rat PDL cells in vitro, with special focus on the ability of bone formation. The PDL cells were cultured with rhBMP-7 at the concentration of 0, 10, 25, 50, 100 and 200ng/ml for MTT assay. We evaluated the alkaline phosphatase activity at 3 and 5 days of incubation and the ability to produce mineralized nodules of rat PDL cells at 14 days of cell culture in concentration of 0, 10, 25, 50 and 100ng/ml. The cell activity was not reduced in cells treated with BMP-7 at $10{\sim}100ng/ml$, whereas the cell activity was reduced in the concentration of 200ng/ml than the control at day 1 and 3(p<0.01). At 3 and 5 day, alkaline phosphatase activity was significantly increased in cells treated with BMP-7 at 50ng/ml and 100ng/ml(p<0.05). The area of mineralized bone nodule was greater in cells treated with BMP-7 at 50 and 100 ng/ml than the control(p<0.01). These results suggest that rhBMP-7 stimulate rat PDL cells to differentiate toward osteoblast phenotype and secretion of the extracellular matrix of rat PDL cells.

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • 제52권3호
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

($TGF-{\beta}$)이 Minocycline을 전처리한 사람 치주인대세포의 활성에 미치는 영향 (Effects of $TGF-{\beta}1$ on Cellular Activity of Minocycline-Pretreated Human Periodontal Ligament Cells)

  • 양승오;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제26권2호
    • /
    • pp.469-490
    • /
    • 1996
  • The initial events required for periodontal regeneration is the attachment, spreading, and proliferation of appropriated cells at the healing sites. These have been reported that minocycline stimulates the attachment of periodontal ligament cells, and also $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of the present study was to evaluate the effects of $TGF-{\beta}1$ on the cellular activity of minocycline treated human periodontal ligament cells. Periodontal ligament cells were obtained from the explants of healthy periodontal ligaments of extracted 3rd molars or premolar teeth extracted from the patients for orthodontic treatment. The cells were cultured in minimal essential medium(${\alpha}-MEM$) supplemented with 10.000units/ml penicillin, $10,000{\mu}g/ml$ streptomycin and 10% FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide and the 5th to the 8th passages of the cells were used. To evaluate the effect of minocycline on cell attachment, the cells were seeded at a cell density of $1.5{\times}10^4$ cells/well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After trypsinization, the cells were counted with hemocytometer and were taken photographs for observation of cellular morphology. To evaluate the effect of $TGF-{\beta}1$ on minocycline-pretreated periodontal ligament cells, the cells were seeded at a cell density of $1{\times}10^4$ cells/ well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After incubation, 1 and 10ng/ml of $rh-TGF-{\beta}1$ were also added to the each well and incubated for 1 and 2 days, respectively. Then, MTT assay, DNA synthesis($^3H-thymidine\;assay$), and protein and collagen assay(3H-proline assay) were carried out. In the MIT assay, after 200ul MTT solutionlconeentration of 5mg/ml) were added to the each well of the 24-well plates and incubated for 3 hours, and 200 ul DMSO were added so as to dissolve insoluble blue formazan crystals which was formed in incubated period. Then it read plates on a ELISA reader. For mitogenic assay, 1 uCi/ml $^3H-thymidine$ was added to each well for the final 2 hours of the incubation periods. After labeling, the wells were washed 3 times with ice cold PBS and 4 times with 5% TCA to remove unincorporated label and precipitate the cellular DNA. DNA, with the incorporated $^3H-thymidine$, was solubilized with 500 ul of 0.1% NaOH/0.1% SDS. A 250 ul aliquot was removed from each well and placed in a scintillation vial with 4ml of scintillation cocktail. Using an liguid scintillation counter, counts per minute(CPM) were determined for each samples. 3 uCi/ml $^3H-proline$ was added to each well for the final 4 hours of the incubation periods and total protein and percent collagen synthesis were carried out. The results indicate that minocycline treated group with $100{\mu}g/ml$ concentration for 1.5 hours significantly increased than that of control in cell attachment, and cell process is also evident compared with that of control in cell morphology, and the cellular activity and DNA synthesis rate of cells treated minocycline and $TGF-{\beta}1$ significantly increased than that of control values, but were below to values of the $TGF-{\beta}1$ only treated group in MIT assay and $^3H-thymidine\;assay$, and the total protein synthesis of minocycline and $TGF-{\beta}1$ treated group also significantly increased than that of control values, but the percent collagen synthesis of tested group significantly decreased to compared with control. On the above the findings, the tested group of minocycline and $TGF-{\beta}1$ did not increase the effect on the cell activity than $TGF-{\beta}1$ only tested group and the tested group of minocycline inhibited cell activity. This results indicate that minocycline was effective on cell attachment in early stage, but it is harmful to cell activity, that inhibitory effect of minocycline was compensated with stimulatory effect of $TGF-{\beta}1$.

  • PDF