• Title/Summary/Keyword: periaqueductal gray

Search Result 51, Processing Time 0.023 seconds

Modulation of Bujaijung-tang and Bojungikgi-tang on Inhibitory and Excitatory Neurotransmitters Activated Ion Channels (부자이중탕과 보중익기탕의 억제성 및 흥분성 신경전달 물질에 의하여 활성화되는 이온통로 조절작용)

  • Lee, Hye-Jung;Seo, Jung-Chul;Lee, Jae-Dong;Kim, Ee-Hwa;Lee, Choong-Yeol;Chung, Joo-Ho;Shin, Min-Chul;Kim, Hyun-Bae;Kim, Youn-Jung;Kim, Chang-Ju
    • Journal of Acupuncture Research
    • /
    • v.17 no.4
    • /
    • pp.5-17
    • /
    • 2000
  • To research the characteristics of ion currents induced by Bujaijung-tang and Bojungikgi-tang, nystatin-perforated patch clamp technique under voltage-c(amp condition was used. Periaqueductal gray neuron was dissociated from Sprauge-Dawley rat, 10-15 days old. Cytotoxicity of Bujaijung-tang and Bojungikgi-tang showed incubation time and concentration dependent manner. Ion current activated by Bujaijung-tang and Bojungikgi-tang were inhibited by bicuculline and strychnine and CNQX. It can be suggested that Bujaijung-tang and Bojungikgi-tang modulate inhibitory and excitatory neurotransmitters-, GABA, glycine and non-NMDA, acticvated ion channels. Modulatory effect of Bujaijung-tang and Bojungikgi-tang was more greater in inhibitory neurotransmitters. Low concentration of Bujaijung-tang which dose not elicit ion current itself, activated GABA and glycine induced chloride currents. In this study, we can found that the activation of Bujaijung-tang and Bojungikgi-tang on non-NMDA subtypes of glutamate receptor is its major action mechanism and can be used as very effective Herb treatment on Myasthenia gravis patient.

  • PDF

Suppression by Microinjection of Bicuculline into Brain Stem Nuclei of Dorsal Horn Neuron Responsiveness in Neuropathic Rats (신경병증성통증 모델쥐에서 뇌간핵 부위에 미세 주입한 Bicuculline에 의한 척수후각세포의 반응도 억제)

  • Leem, Joong-Woo;Choi, Yoon;Lee, Jae-Hwan;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 1998
  • Background: The present study was conducted to investigate effects of microinjection of bicuculline, GABA-A receptor antagonist, into the brain stem nuclei on the dorsal horn neuron responsiveness in rats with an experimental peripheral neuropathy. Methods: An experimental neuropathy was induced by a unilateral ligation of L5~L6 spinal nerves of rats. After 2~3 weeks after the surgery, single-unit recording was made from wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Results: Responses of WDR neurons to both noxious and innocuous mechanical stimuli applied to the somatic receptive fields were enhanced on the nerve injured side. These enhanced responsiveness of WDR neurons were suppressed by microinjection of bicuculline into periaqueductal gray(PAG) or nucleus reticularis gigantocellularis(Gi). A similar suppression was also observed when morphine was microinjected into PAG or Gi. Suppressive action by Gi-bicuculline was reversed by naloxonazine, ${\mu}$-opioid receptor antagonist, microinjected into PAG whereas PAG-bicuculline induced suppression was not affected by naloxonazine injection into Gi. Gi-bicuculline induced suppression were reversed by a transection of dorsolateral funiculus(DLF) of the spinal cord. Conclusions: The results suggest that endogenous opioids, via acting on GABAergic interneurons in PAG and Gi, may be involved in the control of neuropathic pain by activating the descending inhibitory pathways that project to the spinal dorsal horn through DLF to inhibit the responsiveness of WDR neurons.

  • PDF

The Effect of Needle Electrode Electrical Stimulation on the Change of Caspase-3, 9 and Neuronal Nitric Oxide Synthase Immunoreactive Cells in the Sprague Dawley Rats (침전극 저주파자극이 흰쥐의 Caspase-3, 9와 Neuronal Nitric Oxide Synthase 면역반응세포 변화에 미치는 영향)

  • Kim, Soo-Han;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kim, Ji-Sung;Song, Chi-Won
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • In most tissues, apoptosis plays a pivotal role in normal development and in regulation of cell number. Therefore inappropriate apoptosis is revealed in a variety of diseases. This study was carried out to investigate the effects of acupuncture and needle electrode electrical stimulation on the change of caspase-3, 9 and neuronal nitric oxide synthase (nNOS) immunoreactive cells in the sprague dawley rats (SD rat). In immobilized SD rats (n=5), enhanced caspase-3 and caspase-9 expression were detected in the reticular part of substantia nigra, and enhanced nNOS was detected in the dorsolateral periaqueductal gray (DL-PAG) of midbrain and the paraventricular nucleus (PVN) of the hypothalamus using immunohistochemistry. Following the immobilization, acupuncture (n=5) and needle electrode electrical stimulation (n=5, 2 Hz) was applied at H$\acute{e}$g$\breve{u}$ (LI4) acupoint of SD rats, respectively. The stress-induced enhancement in the expression of caspase-3, 9 and nNOS were The present results demonstrate that and needle electrode electrical stimulation are effective in the modulation of expression of caspase-3, 9 and nNOS induced by immobilization.

  • PDF

Effects of Electrical Stimulation of Brainstem Nuclei on Dorsal Horn Neuron Responses to Mechanical Stimuli in a Rat Model of Neuropathic Pain (신경병증성 통증 모델 쥐에서 뇌간 핵의 전기자극이 후각세포의 기계자극에 대한 반응도에 미치는 영향)

  • Leem Joong-Woo;Choi Yoon;Gwak Young-Seob;Nam Taik-Sang;Paik Kwang-Se
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.241-249
    • /
    • 1997
  • The aim of the present study is to examine the brainstem sites where the electrical stimulation produces a suppression of dorsal horn neuron responses of neuropathic rats. An experimental neuropathy was induced by a unilateral ligation of L5-L6 spinal nerves of rats. Ten to 15 days after surgery, the spinal cord was exposed and single-unit recording was made on wide dynamic range (WDR) neurons in the dorsal horn. Neuronal responses to mechanical stimuli applied to somatic receptive fields were examined to see if they were modulated by electrical stimulation of various brainstem sites. Electrical stimulation of periaqueductal gray (PAG), n. raphe magnus (RMg) or n. reticularis gigantocellularis (Gi) significantly suppressed responses of WDR neurons -to both noxious and non-noxious stimuli. Electrical stimulation of other brainstem areas, such as locus coeruleus. (LC) and n. reticularis paragigantocellularis lateralis (LPGi), produced little or no suppression. Microinjection of morphine into PAG, RMg, or Gi also produced a suppression as similar pattern to the case of electrical stimulation, whereas morphine injection into LC or LPGi exerted no effects. The results suggest that PAG, NRM and Gi are the principle brainstem nuclei involved in the descending inhibitory systems responsible for the control of neuropathic pain. These systems are likely activated by endogenous opioids and exert their inhibitory effect by acting on WDR neurons in the spinal cord.

  • PDF

Morphological Changes in The Central Canal of the Hamster Spinal Cord after Treatment with 6-Aminonicotinamide (6-Aminonicotinamide 투여 후 햄스터 척수 중심관의 형태변화)

  • Yang, Young-Chul;Cho, Byung-Pil;Kang, Ho-Suck;Park, In-Kook
    • Applied Microscopy
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 1997
  • Hydrocephalus is induced experimentally in prenatal and suckling animals following an injection of 6-aminonicotinamide (6-AN). The most remarkable characteristic of these animals is aqueduct stenosis caused by swellings of the ependymal cells and subependymal cells in the periaqueductal gray matter and the central canal of the spinal cord. The present study was undertaken to investigate the morphological changes of the ependymal cells in the central canal of the spinal cord of 3.5 months old hamster after treatment with 6-AN. Intraperitoneal administrations of 6-AN (10 mg/kg body weight) every two days gave rise to partial central canal stenosis of the spinal cord after 27-29 days (13-l4th injection), but cilia and microvilli were located in the strictural area of the con#rat canal. The vacuolations in the ependymal cells were not observed and degenerating changes of intracellular organelles of the ependymal cells did not occur, so that the ependymal cells lining the central canal of the hamster spinal cord were not affected by 6-AN. But the present study demonstrate that 6-AN causes to create numerous vacuoles in the subependymal area of the central canal. Although the vacuoles were well developed in the neuroglial cells and the neuropils of the subependymal area, the neurons were not affected by 6-AN. These results strongly suggests that partial central canal stenosis occurred by 6-AN was due to vacuolations and swellings of the neuroglial cells and nueropils in the subependymal area.

  • PDF

Localization of the central nuclei innervating the rat colon using pseudorabies virus (Pseudorabies 바이러스를 이용한 랫드 결장을 지배하는 중추신경핵의 동정)

  • Yi, Seong-joon;Lee, Bong-hee;Kim, Jin-sang;Kang, Tae-chun;Lee, Heungshik S.
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.479-487
    • /
    • 1997
  • The present study was carried out to localize the central nuclei innervating the rat colon using pseudorabies virus-Bartha strain which has been known as a very useful neurotracer. The results were as follows. The central nuclei innervating the proximal colon were premotor area, subfornical organ, preoptic area in telencephalon, and paraventricular nucleus, bed nucleus of stria terminalis, retrochiasmatic area in the diencephalon, and periaqueductal gray, Edinger-Westphal nucleus, tegmental nucleus in the mesencephalon, and parabrachial nucleus, locus ceruleus, A5 area, $K{\ddot{o}}lliker$-Fuse nucleus, magnocellular reticular nucleus in the metencephalon, and nucleus tractus solitarius, A1 noradrenergic cell group, dorsal motor nucleus of vagus nerve, nucleus ambiguus, area postrema in the myelencephalon. In the spinal cord, the thoracic division had some nuclei innervating the proximal colon. The nuclei innervating the distal colon were paraventricular nucleus of the diencephalon, Edinger-Westphal nucleus of midbrain, and parabrachial nucleus, locus ceruleus, A5 area, $K{\ddot{o}}lliker$-Fuse nucleus, magnocellular reticular nucleus of the metencephalon, and nucleus tractus solitarius, dorsal motor nucleus of vagus nerve, nucleus ambiguus, area postrema in the myelencephalon. In the spinal cord, thoracic, lumbar and sacral division innervated the distal colon.

  • PDF

Effects of Aqueous Extract of Achyranthes Japonica on Functional Recovery in Sciatic Nerve after Crushed Sciatic Nerve Injury in Rats (우슬 추출물이 흰쥐 좌골신경 손상 후 좌골신경의 기능회복에 미치는 영향)

  • Lee, Ma-Seong;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.143-158
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problem and often result in severe functional deficits. The aim of this study is to evaluate the effects of aqueous extract of Achyranthes japonica(AJ) on functional recovery in sciatic nerve after crushed sciatic nerve injury. Methods : In the present study, the animals in the AJ-treated groups received the aqueous extract of AJ at the respective doses orally for 13 consecutive days. In order to assess the effects of the aqueous extract of AJ on function recovery in crushed sciatic nerve injury, sciatic functional index(SFI) was performed. c-Fos expression in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG), and neurofilament, and the expressions of brain-derived neurotrophic factor(BDNF), nerve growth factor(NGF) following crushed sciatic nerve injury in rats were investigated. For this, immunohistochemistry and western blot were performed. Results : In the present study, crushed sciatic nerve injury showed characteristic gait changes showing decrease of SFI value and treatment with the aqueous extract of AJ significantly enhanced the SFI value. Neurofilament expression in the sciatic nerve was decreased by crushed sciatic nerve injury and treatment with the AJ increased neurofilament expression. The expressions of BDNF and NGF in the sciatic nerve were increased following crushed sciatic nerve injury and treatment with the AJ significantly controlled the sciatic nerve injury-induced increment of BDNF and NGF expressions. c-Fos expressions in the PVN and vIPAG were increased following crushed sciatic nerve injury and treatment with the AJ significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions. Conclusions : These results suggest that AJ treatment after crushed sciatic nerve injury is effective in the functional recovery by enhancing axonal regeneration and suppressing of pain.

Effects of Haein-tang(Hairen-tang) Extract on Functional Recovery in Sciatic Nerve and c-Fos Expression in the Brain after Crushed Sciatic Nerve Injury in Rats (해인탕 추출물이 흰쥐 좌골신경 손상 모델에서 기능회복과 뇌의 c-Fos 발현에 미치는 영향)

  • Eun, Young-Joon;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.125-142
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problems and often result in severe functional deficits. The purpose of this study was to evaluate the effects of Haein-tang(Hairen-tang) extract on functional recovery and pain release in the sciatic nerve after crushed sciatic nerve injury in rats. Methods : 1. Sciatic functional index(SFI) were performed on functional recovery. 2. c-Fos immunohistochemistry were performed on c-Fos expressions in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG). 3. Neurofilament immunohistochemistry were performed on neurofilament regeneration. 4. Western blot were performed on brain-derived neurotrophic factor(BDNF) and nerve growth factor(NGF) expression. Results : 1. Haein-tang(Hairen-tang) extract significantly enhanced the SFI value in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 2. Haein-tang(Hairen-tang) extract significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions in the PVN and vIPAG in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 3. Haein-tang(Hairen-tang) extract significantly increased neurofilament expression in the sciatic nerve injury and 50 mg/kg, 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 4. Haein-tang(Hairen-tang) extract significantly controled the sciatic nerve injury-induced increment of BDNF and NGF expressions in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. Conclusions : These results suggest that Haein-tang(Hairen-tang) treatment after sciatic nerve injury is effective for the functional recovery by enhancing of axonal regeneration and suppressing of pain.

Transplantation of human adipose-derived stem cells into the urethra ameliorates stress urinary incontinence and blunts the induction of c-Fos immunoreactivities in brain areas related to micturition in female rats

  • Kim, Sung-Eun;Ko, Il-Gyu;Kim, Bo-Kyun;Sung, Yun-Hee;Shin, Mal-Soon;Cho, Se-Hyung;Kim, Chang-Ju;Kim, Khae-Hawn;Lee, Kyo-Won;Kim, Dong-Hee
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.237-244
    • /
    • 2010
  • Stress urinary incontinence (SUI) is a common condition that primarily affects women. Here, we investigate the effects of human adipose-derived stem cells (ADSCs) in a rodent model of SUI. Female Sprague-Dawley rats at 7 weeks of age were randomly divided into three groups (n=8 per group): sham-operation, SUI-induction by transabdominal urethrolysis, and SUI-induction followed by transplantation of human ADSCs into the urethra. The abdominal leak point pressure at 8 weeks after the operation was markedly decreased by transabdominal urethrolysis, confirming successful induction of SUI. Interestingly, transplantation of human ADSCs into the urethra significantly blunted the decrease of abdominal leak point pressure in SUI-induced rats. Accordingly, we observed expression of ${\alpha}$-smooth muscle actin in a significant proportion of transplanted ADSCs, indicating differentiation of ADSCs into smooth muscle cells in the urethra. Moreover, the SUI-induced elevations of c-Fos immunoreactivities in the pontine micturition center (PMC) and in the ventrolateral periaqueductal gray (vlPAG) were clearly suppressed by transplantation of human ADSCs. These results imply that human ADSCs can be an effective therapeutic modality to ameliorate the symptoms of SUI.

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).