• Title/Summary/Keyword: performance-robustness

Search Result 1,704, Processing Time 0.034 seconds

Variable Structure Control using Inertial Coordinate-Operator Feedback (Inertial Coordinate-Operator Feedback을 이용한 가변구조제어)

  • You, Wan-Sik;Hur, Young-Jae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.465-467
    • /
    • 1994
  • A VSC with Inertial COFB(Coordinate-Operator Feedback) is presented for chattering alleviation. Athought the conventional sliding mode controller has good properties of robustness for disturbances or parameter variations, fast response, and easy implementation, there exists an inevitable chattering problem which deteriorates the control performance of system. VSC using Inertial COFB has properties of bounded feedback gain, reduced chattering, and robustness for disturbances or parameter variations. The validity of the proposed method is demonstrated through computer simulation for a position control of BLDCM.

  • PDF

Illumination Invariant Ranging Sensor Based on Structured Light Image (조명잡음에 강인한 구조광 영상기반 거리측정 센서)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.122-130
    • /
    • 2010
  • This paper presents an active ranging system based on laser structured-light image. The structured-light image processing is computationally efficient in comparison with the conventional stereo image processing, since the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise, an efficient image processing algorithm, i.e., integration of difference images with structured-light modulation is proposed. Distance equation from the measured structured light pixel distance and system parameter calibration are addressed in this paper. Experiments and analysis are carried out to verify performance of the proposed ranging system.

Design of Robust Controller for DC to DC Converter (DC - DC 컨버터 구동을 위한 강인제어기 설계)

  • Kim, Tae-Woo;Kim, Min-Chan;Yoon, Seong-Sik;Kim, Hyeon-Woo;Kim, Tae-Kyu;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.995_996
    • /
    • 2009
  • This paper presents a sliding mode control method for step up DC-DC converter. For high performance control of converter, it requires the robustness between the input current and the output voltage. As a result, in spite of disturbance and parameter uncertainty, the proposed controller has the robustness to control the output voltage.

  • PDF

Robust Torque Control of Internal Combustion Engine Using LMI Technique (수치화 최적화 기법을 이용한 내연기관의 강인한 토크 제어)

  • 김영복;양주호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.100-109
    • /
    • 1997
  • Parameters in the internal combustion engines are variable depending on the operating points. Therefore, it is necessary to compensate for the uncertainties. Form this point of view, this paper gives a controller design method and a robust stability condition by LMI approach for engine torque control which satisfies the gives H$\infty$ control performance in the presence of physical parameter perturbations. To the end, the robustness of the system in the presence of perturbation is guaranteed in the all engine operating regions. Its effectiveness is demonstrated by simulation.

  • PDF

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

High performance Control of Induction Motor using Hybrid-PI Controller (Hybrid-PI 제어기를 이용한 유도전동기의 고성능 제어)

  • Choii, Jung-Sik;Ko, Jae-Sub;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.260-262
    • /
    • 2006
  • This paper presents Hybrid-PI controller of induction motor drive using fuzzy control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid-PI controller proposes a new method based self tuning PI controller. Hybrid-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Vibration control of a flexible SCARA type robot (유연한 수평 다관절형 로봇의 진동제어)

  • 용대중;임승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.225-228
    • /
    • 1996
  • This paper concerns a SCARA type robot with the second arm flexible. Its equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are first determined based on the inverse dynamics of the latter. Next, in order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified with a prescribed degree of stability. The numerical simulations results show the satisfactory control performance.

  • PDF

A modified model reference adaptive system for the speed identification of induction motors

  • Hur, Namho;Hong, Kichul;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.427-431
    • /
    • 1996
  • The MRAS proposed by Schauder [8] is modified to improve robustness to the change of load torque and/or the variation of the stator resistance. The difference between the voltage and the current model is fed into the current model via proportional and integral gains. In order to generalize the MRAS, supposing that the rotor speed is time varying, we add a compensating term to the current model. It does not alter the Popov's integral inequality condition. Also, the asymptotic stability of the modified MRAS (MMRAS) is shown with the stability proof technique as in the original paper. By the simulation works, it is verified that the MMRAS obtains improved performance than the original MRAS.

  • PDF

Robust Music Identification Using Long-Term Dynamic Modulation Spectrum

  • Kim, Hyoung-Gook;Eom, Ki-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.69-73
    • /
    • 2006
  • In this paper, we propose a robust music audio fingerprinting system for automatic music retrieval. The fingerprint feature is extracted from the long-term dynamic modulation spectrum (LDMS) estimation in the perceptual compressed domain. The major advantage of this feature is its significant robustness against severe background noise from the street and cars. Further the fast searching is performed by looking up hash table with 32-bit hash values. The hash value bits are quantized from the logarithmic scale modulation frequency coefficients. Experiments illustrate that the LDMS fingerprint has advantages of high scalability, robustness and small fingerprint size. Moreover, the performance is improved remarkably under the severe recording-noise conditions compared with other power spectrum-based robust fingerprints.