• Title/Summary/Keyword: performance based

Search Result 49,131, Processing Time 0.079 seconds

Methodology of Test for sUAV Navigation System Error (소형무인항공기 항법시스템오차 시험평가 방법)

  • SungKwan Ku;HyoJung Ahn;Yo-han Ju;Seokmin Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.510-516
    • /
    • 2021
  • Recently, the range of utilization and demand for unmanned aerial vehicle (UAV) has been continuously increasing, and research on the construction of a separate operating system for low-altitude UAV is underway through the development of a management system separate from manned aircraft. Since low-altitude UAVs also fly in the airspace, it is essential to establish technical standards and certification systems necessary for the operation of the aircraft, and research on this is also in progress. If the operating standards and certification requirements of the aircraft are presented, a test method to confirm this should also be presented. In particular, the accuracy of small UAV's navigation required during flight is required to be more precise than that of a manned aircraft or a large UAV. It was necessary to calculate a separate navigation error. In this study, we presented a test method for deriving navigation errors that can be applied to UAVs that have difficulty in acquiring long-term operational data, which is different from existing manned aircraft, and conducted verification tests.

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

Comparative analysis of the digital circuit designing ability of ChatGPT (ChatGPT을 활용한 디지털회로 설계 능력에 대한 비교 분석)

  • Kihun Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.967-971
    • /
    • 2023
  • Recently, a variety of AI-based platform services are available, and one of them is ChatGPT that processes a large quantity of data in the natural language and generates an answer after self-learning. ChatGPT can perform various tasks including software programming in the IT sector. Particularly, it may help generate a simple program and correct errors using C Language, which is a major programming language. Accordingly, it is expected that ChatGPT is capable of effectively using Verilog HDL, which is a hardware language created in C Language. Verilog HDL synthesis, however, is to generate imperative sentences in a logical circuit form and thus it needs to be verified whether the products are executed properly. In this paper, we aim to select small-scale logical circuits for ease of experimentation and to verify the results of circuits generated by ChatGPT and human-designed circuits. As to experimental environments, Xilinx ISE 14.7 was used for module modeling, and the xc3s1000 FPGA chip was used for module embodiment. Comparative analysis was performed on the use area and processing time of FPGA to compare the performance of ChatGPT products and Verilog HDL products.

Dust Prediction System based on Incremental Deep Learning (증강형 딥러닝 기반 미세먼지 예측 시스템)

  • Sung-Bong Jang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.301-307
    • /
    • 2023
  • Deep learning requires building a deep neural network, collecting a large amount of training data, and then training the built neural network for a long time. If training does not proceed properly or overfitting occurs, training will fail. When using deep learning tools that have been developed so far, it takes a lot of time to collect training data and learn. However, due to the rapid advent of the mobile environment and the increase in sensor data, the demand for real-time deep learning technology that can dramatically reduce the time required for neural network learning is rapidly increasing. In this study, a real-time deep learning system was implemented using an Arduino system equipped with a fine dust sensor. In the implemented system, fine dust data is measured every 30 seconds, and when up to 120 are accumulated, learning is performed using the previously accumulated data and the newly accumulated data as a dataset. The neural network for learning was composed of one input layer, one hidden layer, and one output. To evaluate the performance of the implemented system, learning time and root mean square error (RMSE) were measured. As a result of the experiment, the average learning error was 0.04053796, and the average learning time of one epoch was about 3,447 seconds.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (객체 인식 모델과 지면 투영기법을 활용한 영상 내 다중 객체의 위치 보정 알고리즘 구현)

  • Dong-Seok Park;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2023
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

Development of Electromyographic Signal Responsive Walking Rehabilitation Robot System Enables Exercise Considering Muscle Condition (근육 상태를 고려한 운동이 가능한 근전도 신호 반응형 보행 재활 로봇 시스템 개발)

  • Sang-Il Park;Chang-Su Mun;Eon-Hyeok Kwon;Seong-Won Kim;Si-Cheol Noh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.126-133
    • /
    • 2023
  • In this study, electromyography was obtained in the six muscle areas that move the joints of the two legs, and by analyzing it, an exercise robot system capable of gait rehabilitation was proposed in consideration of the individual's muscle state. Through this, the system was constructed to prevent the effect of exercise from decreasing because the patient's will was not reflected when walking exercise was simply provided automatically. As a result of the evaluation of the developed system, it was confirmed that the pedestrian rehabilitation robot system manufactured through this study had performance suitable for the design requirements, and it was also confirmed that the usability evaluation was comprehensively satisfactory. The results of this study are thought to be of great help to patients who are having difficulty in gait rehabilitation, and are believed to be helpful in the development of electromyography signal-based gait robot systems.

A Pilot Study on Outpainting-powered Pet Pose Estimation (아웃페인팅 기반 반려동물 자세 추정에 관한 예비 연구)

  • Gyubin Lee;Youngchan Lee;Wonsang You
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In recent years, there has been a growing interest in deep learning-based animal pose estimation, especially in the areas of animal behavior analysis and healthcare. However, existing animal pose estimation techniques do not perform well when body parts are occluded or not present. In particular, the occlusion of dog tail or ear might lead to a significant degradation of performance in pet behavior and emotion recognition. In this paper, to solve this intractable problem, we propose a simple yet novel framework for pet pose estimation where pet pose is predicted on an outpainted image where some body parts hidden outside the input image are reconstructed by the image inpainting network preceding the pose estimation network, and we performed a preliminary study to test the feasibility of the proposed approach. We assessed CE-GAN and BAT-Fill for image outpainting, and evaluated SimpleBaseline for pet pose estimation. Our experimental results show that pet pose estimation on outpainted images generated using BAT-Fill outperforms the existing methods of pose estimation on outpainting-less input image.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.