• 제목/요약/키워드: perforated

검색결과 817건 처리시간 0.03초

다공관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube)

  • 이동훈
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

다공벽의 기체역학에 관한 연구 (A Study of the Gasdynamics of Perforated Wall)

  • 곽종호;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.538-543
    • /
    • 2003
  • Perforated wall has long been employed to control a variety of flow phenomena. It has been, in general, characterized by a porosity of the perforated wall. However, this porosity value does not take account of the number and detailed shape of porous holes, but is defined by only the ratio of the perforated area to total wall surface area. In order to quantify the porous wall effects on the flow control performance, an effective porosity should be known with the detailed flow properties inside the porous holes. In the present study, a theoretical analysis using a small disturbance method is performed to investigate detailed flow information through porous hole and a computational work is also carried out using the two-dimensional, compressible Navier-Stokes equations. Both the results are compared with existing experimental data. The gasdynamical porosity is defined to elucidate the effect of perforated wall.

  • PDF

병렬 다공판 시스템의 흡음특성과 성능에 관한 연구 (A Study on the Sound Absorptive Characteristics and Performance of Parallel Perforated Plate Systems)

  • 홍병국;송화영;서성원;이동훈
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1003-1008
    • /
    • 2005
  • The acoustic absorption of a multiple layer perforated plate system is very good near the resonance frequency region, while it has been regarded as a demerit that its frequency bandwidth is considerably narrow. In order to overcome such a demerit, the parallel perforated plates with different porosities are proposed. The sound absorption of such system composed of a parallel perforated plate is calculated by an equivalent electroatoustic circuit approach and validated by comparing the calculated absorption coefficients with those measured by the two-microphone impedance tube method. The sound absorptive characteristics and performance of parallel perforated plate systems are discussed from a standpoint of frequency bandwidth related with sound absorption.

전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측 (Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method)

  • 이동훈;허성춘;권영필
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.

미세 다공판을 이용한 환기팬 시스템의 소음저감 (Noise Reduction of a Ventilating Fan System using Micro-Perforated Panel)

  • 이종석;송화영;이동훈;권혁정;김동윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1209-1211
    • /
    • 2006
  • This paper introduces an experimental study for the noise reduction of a ventilating fan system. For the purpose of noise reduction, conventionally an absorptive duct silencer filled with a glass fiber has been utilized. However, a glass fiber has some disadvantages like hygiene and secondary pollution problems. In order to overcome these problems, in this paper, a perforated duct silencer has been applied to the ventilating fan system. For the designing of a perforated duct silencer, the transmission losses for various perforated panel systems are measured and compared with its noise reduction performance.

  • PDF

다중 다공판 시스템의 흡음성능 향상에 관한 연구 (A Study on the Improvement of Acoustic Absorption of Multiple Layer Perforated Panel Systems)

  • 이동훈;서성원;홍병국;송화영
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.571-577
    • /
    • 2005
  • The acoustic absorption of multiple layer perforated panel systems is largely reduced at the anti-resonance frequency. In order to improve the acoustic absorption at the anti-resonance frequency, the sound absorbing materials are inserted between perforated panels. By the insertion of absorbing materials, it is found that the multiple layer perforated panel system has better acoustic absorption at the anti-resonance frequency and more broadband frequency. Besides, it is shown that the absorption coefficients from the transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated panels, airspaces or sound absorbing materials.

Experimental studies of suppressing effectiveness on sloshing with two perforated floating plates

  • Yu, Yue-Min;Ma, Ning;Fan, She-Ming;Gu, Xie-Chong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.285-293
    • /
    • 2019
  • In the present paper, model tests of suppressing sloshing fitted with two perforated floating plates are carried out. The study involves identification of system performance such as the suppression and the solidity ratio. Three different solidity ratios of perforated plates have been tried out as potential positive slosh damping devices. A series of painstaking experiments have been conducted in a rigid rectangular tank on six degrees of freedom motion platform under roll harmonic excitation. Comparison of the clean tank shows that the three types of perforated plates are all effective on damping the run-up and impact pressure along the bulkhead. The parametric study indicates that the perforated plate with the median solidity ratio is the most optimal one in suppressing sloshing among three configurations.

직립 타공판 배열에 따른 소파 성능해석 (On the Efficiency of a Wave Absorber Using the Arrays of Upright Perforated Plates)

  • 조일형;김현주;최학선
    • 한국항만학회지
    • /
    • 제10권1호
    • /
    • pp.15-23
    • /
    • 1996
  • In this paper, the numerical model to analyze the wave absorbing performance of upright perforated plates is developed under the linear potential theory. If the drag force is dominent to the inertia force in passing perforated plate, the characteristics of perforated plates are determined by a nondimensionlized real-value of G or a length scaled real-value of a. The parameters (G,a), which depend on the drag coefficient, porosity and local shape of plates, can be readily obtained by simple experiments. We investigated the reflection coefficients over a wide frequency range according to the arrays of perforated plates with different values of G and a. We found that the wave absorbing system using the arrays of upright perforated plates is sufficient to install in the ocean engineering basin.

  • PDF

창문 열관류율 저감을 위한 열교 저감형 보강재 연구 (A Study on the Thermal Bridge Reduced Stiffeners for the Reduction of Window Overall Hear Transfer Coefficient)

  • 장혁수;김영일;정광섭
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.71-80
    • /
    • 2015
  • PVC 프레임의 취약한 강도를 보완하기 위해 사용되는 철재 보강재는 상대적으로 높은 열전도 특성으로 인해 PVC 프레임의 전체적인 열 성능을 떨어뜨리는 역할을 한다. 본 연구는 철재 보강재의 타공을 통해 표면적을 줄임으로서 전열 면적의 감소를 통한 열저항 특성을 개선하고, 감소된 만큼 두께를 높임으로서 타공으로 인한 강도 저하를 보완하였다. 이에 대한 성능을 평가하기 위해 PVC frame, PVC frame + original steel stiffener, PVC frame + 30% perforated steel stiffener, PVC frame + 50% perforated steel stiffener, PVC frame + 65% perforated steel stiffener 등 5개의 시험체를 구성하였으며, 시험 방법은 수식과 시뮬레이션에 의한 방법을 적용하였다. 시험 결과 PVC frame + 65% perforated steel stiffener이 열저항 특성과 강도특성에서 가장 높은 것으로 평가되었다.

공기식 PVT 컬렉터에 적용된 타공 베플의 변수에 따른 열 성능 향상을 위한 연구 (A Study for Improving Thermal Performance According to Variables of Perforated Baffle in Air-type PVT Collector)

  • 유지숙;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.83-91
    • /
    • 2019
  • Photovoltaic thermal (PVT) collectors are devices that simultaneously produce electricity and heat. Research on conventional air-type PVT collector focuses on installing baffles to enhance the collector's thermal performance. However, the baffles have pressure drop inside the collector which degrades the thermal performance. Thus, it is necessary to design baffles to smoothen the flow inside the air-type PVT collector. Alternatively, installing perforated baffles in air-type PVT collectors can reduce the collector weight, but parameters such as the diameter of the perforated holes and the height of the perforated plates should be considered. Therefore, the main aim of this study was to analyze thermal characteristics of each variable of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through NX program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. Therefore, the main aim of this study was to analyze thermal characteristics of each variable (Baffle angle, length, height, pitch, perforated ratio) of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through CFD program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. As a result, the maximum outlet temperature was increased by 1.45 times and the heat gain was increased by 193.8 Wth, depending on the perforated baffle plate, compared to the collector without the baffle. The heat transfer performance showed that the maximum internal velocity was 1.61 times higher and the Reynolds number was 1.06 times higher depending on the parameters of the baffle plate.