• Title/Summary/Keyword: perceptron neural network

검색결과 439건 처리시간 0.022초

RBF 뉴럴네트워크를 사용한 바이오매스 에너지문제의 계량적 분석 (Quantitative Analysis for Biomass Energy Problem Using a Radial Basis Function Neural Network)

  • 백승현;황승준
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.59-63
    • /
    • 2013
  • In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.

퍼셉트론형 신경회로망에 의한 패리티판별 (Parity Discrimination by Perceptron Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.565-571
    • /
    • 2010
  • 본 논문에서는 퍼셉트론형 신경회로망에 오차역전파 알고리즘을 사용하여 학습을 실시하여, N비트의 패리티판별에 필요한 최소의 중간유닛수의 해석에 관한 연구이다. 따라서 본 논문은 제안한 퍼셉트론형 신경회로망의 중간 유닛의 수를 변화시켜 N비트의 패리티 판별 실험을 실시하였다. 본 시스템은 패라티 판별의 실험을 통하여 N비트 패리티 판별이 가능하다는 것을 실험으로 확인한다.

인공신경망 기반의 기타 코드 분류 시스템 성능 비교 (Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network)

  • 박선배;유도식
    • 한국멀티미디어학회논문지
    • /
    • 제21권3호
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

퍼셉트론 신경회로망을 사용한 유성음, 무성음, 묵음 구간의 검출 알고리즘 (Voiced-Unvoiced-Silence Detection Algorithm using Perceptron Neural Network)

  • 최재승
    • 한국전자통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.237-242
    • /
    • 2011
  • 본 논문에서는 다층 퍼셉트론 신경회로망을 사용하여 각 프레임에서의 유성음, 무성음, 그리고 묵음 구간을 검출하는 구간검출 알고리즘을 제안한다. 다층 퍼셉트론 신경회로망의 입력으로는 고속 푸리에변환에 의한 전력스펙트럼 및 고속 푸리에변환 계수가 사용되어 네트워크가 학습된다. 본 실험에서는 원 음성에 백색잡음이 중첩된 음성을 신경회로망에 입력함으로서 각 프레임에서의 유성음, 무성음, 묵음 구간의 검출성능 결과를 나타낸다. 본 실험에서는 신경회로망의 학습 데이터 및 평가 데이터가 다를 경우에도 이러한 음성 및 백색잡음에 대하여 92% 이상의 검출율을 구할 수 있었다.

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

다층퍼셉트론 인공신경망을 이용한 저장탱크 슬로싱해석 (A Sloshing Analysis of Storage Tank using Multi-layer Perceptron Artificial Neural Network)

  • 김현수;이영신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.491-496
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as aircraft. cars and liquid rocket and so on. This sloshing effect could be a severe problem in vehicle stability and control. So, various baffles are used in order to reduce the sloshing. The Lagrangian, Eulerian and ALE numerical method is widely used on the analysis of sloshing presently. But, these numerical methods are needed so many CPU time. In this study, for the reduction of the sloshing analysis time, me multi.layer perceptron artificial neural network is introduced and analysis results are presented.

  • PDF

다층 퍼셉트론 신경망을 이용한 하드 디스크 결함 분포의 패턴 인식 (Pattern Recognition of Hard Disk Defect Distribution Using Multi-Layer Perceptron Network)

  • 문운철;이재두
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.94-101
    • /
    • 2007
  • 하드 디스크(Hard Disk) 결함의 표준 패턴 클래스는 6가지로 분류되며, 이는 하드 디스크 생산 공정의 불량 처리 과정에서 중요한 역할을 수행한다. 본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 구성된 입출력 데이터들은 오차 역전파(Error Back-Propagation) 알고리듬을 통하여 다층 퍼셉트론의 학습에 사용되었다. 테스트 결과 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.

NETLA Based Optimal Synthesis Method of Binary Neural Network for Pattern Recognition

  • Lee, Joon-Tark
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes an optimal synthesis method of binary neural network for pattern recognition. Our objective is to minimize the number of connections and the number of neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm (NETLA) for the multilayered neural networks. The synthesis method in NETLA uses the Expanded Sum of Product (ESP) of the boolean expressions and is based on the multilayer perceptron. It has an ability to optimize a given binary neural network in the binary space without any iterative learning as the conventional Error Back Propagation (EBP) algorithm. Furthermore, NETLA can reduce the number of the required neurons in hidden layer and the number of connections. Therefore, this learning algorithm can speed up training for the pattern recognition problems. The superiority of NETLA to other learning algorithms is demonstrated by an practical application to the approximation problem of a circular region.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.51-59
    • /
    • 2019
  • 웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망 (A Multi-Layer Perceptron for Color Index based Vegetation Segmentation)

  • 이문규
    • 산업경영시스템학회지
    • /
    • 제43권1호
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.