• Title/Summary/Keyword: peptide amide

Search Result 30, Processing Time 0.023 seconds

Peptide Amidation: Production of Peptide Hormones in vivo and in vitro

  • Kim, Kyun-Hwan;Baik L. Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.244-251
    • /
    • 2001
  • Over half of all biologically active peptide and peptide hormones are $\alpha$-amidated at their C-terminus, which is essential for their full biological activities. Amidation is accomplished through the sequential reaction of the two enzymes encoded by the single bifunctional, peptidyl-glycine $\alpha$-amidating monooxygenase (PAM or an $\alpha$-amidating enzyme). PAM catalyze the forma - tion of a peptide amide from peptide precursors that include a C-terminal glycine, and requires copper molecular oxygen and ascorbate. PAM is the only enzyme that produces peptide amides in vivo. However various strategies utilizing PAM, carboxypeptidase-Y enzymes, and chemical syn-thesis have been developed for producing peptide amides in vitro. The growing need and impor-tance of peptide amide drugs has highlighted the necessity for a efficient in vitro amidating sys-tem for industrial application for the production of peptide hormones, like calcitonin and oxytocin. This review presents the current situation regarding amidation with a special emphasis on the in-dustrial production or peptide hormones.

  • PDF

Radiolysis of Oxygenated and Deoxygenated Glycylglycylglycine in Aqueous Solution and in the Solid State (酸素의 存在下와 無酸素下에서의 水溶液 및 固體 Glycylglycylglycine의 放射線分解)

  • Kang, Man-Sik
    • The Korean Journal of Zoology
    • /
    • v.13 no.3
    • /
    • pp.75-84
    • /
    • 1970
  • Gamma-radiolyses of oxygenated and deoxygenated glycylglycylclycine in aqueous solution and in the solid state are observed, with special regards to peptied bond rupture for elucidation of radiolytic mechanism of proteins, by means of chromatorgraphic separation of degradation products, spectrophotometric quantitation of carbonyl compounds, micro-titration of amide formation, infrared spectrophptometry, and ultraviolet spectrophotometry for evaluation of radiation damage. Essential difference of peptide bond rupture is observed in solution and in the solid state, being high in the former and negligible in the latter. On the other hand, the presence of and obsence of oxygen in solution during irradiation are not so significant with respect to peptide bond rupture, except the recombination of free-radicals produced in deoxygenated solution. Peptide bond rupture in solution is attributable to the mechanisms proposed by Garrison et al.; dehydrogenation followed by hydrolysis to yield acid amide and carbonyl function as found on the basis of radiolytic products. Peptide bond attack at $\\alpha$-carbon locus might be suggestive for irradiated solid but not significant in view of low degree of peptide bond rupture.

  • PDF

UV Resonance Raman Studies of Cis-Peptide, Diketopiperazine (자외선 공명 라만분광법을 이용한 시스-펩티드, 디케토피페라진 연구)

  • Song, Sunho
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • We have examined Raman spectra of cis-peptide model complex, diketopiperazine in water and $D_2O$ with 320 nm through 218 nm excitation. Our study examines assignment of the resonance enhanced amide vibrations and characterizes their enhancement mechanism. Three resonance enhaned cis-peptide marker bands were observed in aqueous solution at 1676, 1533 and $806cm^{-1}$, which were assigned to the cis-amide I, II and S band, respectively. The $1533cm^{-1}$ amide II band, which is almost pure C-N stretching, was most dominant in water and shifted to $1520cm^{-1}$ upon N-deuteration. This band will be probably a potential probe band for cis-peptide moieties in proteins. The excitation profile data and an Albrecht A-term fit indicated that the cis-peptide vibrations derive their intensities from the 188 nm cis-peptide ${\pi}-{\pi}^*$ electronic transition. We Propose that the geometry of cis-peptide ${\pi}^*$ excited state is C-N bond displacement relative to that of electronic ground state.

  • PDF

Integrated Thermochemical Approach to Collision-Induced Dissociation Process of Peptides

  • Shin, Seung Koo;Yoon, Hye-Joo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.131-136
    • /
    • 2021
  • Collision-induced dissociation of peptides involves a series of proton-transfer reactions in the activated peptide. To describe the kinetics of energy-variable dissociation, we considered the heat capacity of the peptide and the Marcus-theory-type proton-transfer rate. The peptide ion was activated to the high internal energy states by collision with a target gas in the collision cell. The mobile proton in the activated peptide then migrated from the most stable site to the amide oxygen and subsequently to the amide nitrogen (N-protonated) of the peptide bond to be broken. The N-protonated intermediate proceeded to the product-like complex that dissociated to products. Previous studies have suggested that the proton-transfer equilibria in the activated peptide affect the dissociation kinetics. To take the extent of collisional activation into account, we assumed a soft-sphere collision model, where the relative collision energy was fully available to the internal excitation of a collision complex. In addition, we employed a Marcus-theory-type rate equation to account for the proton-transfer equilibria. Herein, we present results from the integrated thermochemical approach using a tryptic peptide of ubiquitin.

Combined Role of Two Tryptophane Residues of α-Factor Pheromone

  • Hong, Eun Young;Hong, Nam Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.600-608
    • /
    • 2013
  • Amide analogs of tridecapeptide ${\alpha}$-factor (WHWLQLKPGQPMYCONH$_2$) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide $[Ala_3]{\alpha}$-factor amide (2) and $[Aib_3]{\alpha}$-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one $[Ala^1]{\alpha}$-factor amide (1) and $[Aib^1]{\alpha}$-factor amide (4), reflecting that $Trp^3$ may plays more important role than $Trp^1$ for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of ${\alpha}$-factor ligand to activation of Ste2p through interaction with residue $Tyr^{266}$ and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, $[Ala^{1,3}]{\alpha}$-factor amide (3), $[Aib^{1,3}]{\alpha}$-factor amide (6), [D-$Trp^3]{\alpha}$-factor amide (8) and [des-$Trp^1,Phe^3]{\alpha}$-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

Expression, Purification, and Characterization of C-Terminal Amidated Glucagon in Streptomyces lividans

  • Qi, Xiaoqiang;Jiang, Rong;Yao, Cheng;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1076-1080
    • /
    • 2008
  • Glucagon, a peptide hormone produced by alpha-cells of Langerhans islets, is a physiological antagonist of insulin and stimulator of its secretion. In order to improve its bioactivity, we modified its structure at the C-terminus by amidation catalyzed by a recombinant amidase in bacterial cells. The human gene coding for glucagon-gly was PCR amplified using three overlapping primers and cloned together with a rat ${\alpha}$-amidase gene in plasmid pMGA. Both genes were expressed under control of the strong constitutive promoter of aph and secretion signal melC1 in Streptomyces lividans. With Phenyl-Sepharose 6 FF, Q-Sepharose FF, SP-Sepharose FF chromatographies and HPLC, the peptide was purified to about 93.4% purity. The molecular mass of the peptide is 3.494 kDa as analyzed by MALDI TOF, which agrees with the theoretical mass value of the C-terminal amidated glucagon. The N-terminal sequence of the peptide was also determined, confirming its identity with human glucagon at the N-terminal part. ELISA showed that the purified peptide amide is bioactive in reacting with glucagon antibodies.

Liquid phase combinatorial synthesis of non-peptide bradykinin antagonists and evaluation of their activity on guinea-pig ileum

  • Park, Hea-Young;Kam, Yu-Rim
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.232.1-232.1
    • /
    • 2003
  • Bradykinin is an autocoid related to acute and chronic pain and inflammation. The non-peptide bradykinin antagonists are of interest as novel anti-inflammatory therapeutics and some active compounds such as FR 173657, LF 16-0687, and bradyzide were reported very recently. In our search for the new bradykinin antagonists, we designed to synthesize the analogues of FR173657 with two to three amide bonds and lipophilic ring system in each molecule. (omitted)

  • PDF

The 3D-QSAR study of non-peptide bradykinin antagonists by CoMFA

  • Park, Hea-Young;Choi, Su-Young;Lee, Su-Jin;Kam, Yu-Rim
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.186.1-186.1
    • /
    • 2003
  • Bradykinin is an autocoid related to acute and chronic pain and inflammation. The non-peptide bradykinin antagonists are of interest as novel anti-inflammatory therapeutics. Some active compounds such as FR 173657, LF 160687, and bradyzide were reported very recently. In our search for the new bradykinin antagonists, we designed and synthesized the iminodiacetic acid derivatives having two or three amide bonds and lipophilic ring system in each molecule. Liquid phase combinatorial synthesis using the iminodiacetic acid template gave diverse individual compounds rapidly and efficiently on a 10-50 mg scale. (omitted)

  • PDF

Analysis of the Interactive Characteristic of Environmental Toxic Peptide and Phospholipid (환경 독성 Peptide의 인지질과의 상호 작용 특성 분석)

  • 이봉헌;박흥재
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.77-80
    • /
    • 2003
  • The interaction of mastoparan B, a cationic tetradecapeptide amide isolated from the hornet Vespa basalis, with phospholipid bilayers was studied with synthetic mastoparan B and its analogue with Ala instead of hydrophobic 12th amino acid residue in mastoparan B. MP-B and its derivative, [12-Ala]MP-B were synthesized by the solid-phase peptide synthesis method. MP-B and its analogue, [12-Ala]MP-B adopted an unordered structure in buffer solution. In the presence of neutral and acidic liposomes, the peptides took an $\alpha$-helical structure. The two peptides interacted with neutral and acidic lipid bilayers. These results indicated that the hydrophobic face in the amphipathic $\alpha$-helix of MP-B critically affected the biological activity and helical content.