• Title/Summary/Keyword: pepper(Capsicum annuum L.)

Search Result 344, Processing Time 0.031 seconds

Varietal Difference in Plant Regeneration from Cotyledon Culture of Capsicum annuum L. (고추 자엽에서 식물체 재분화의 품종간 차이)

  • 오명규;이영만;박문수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.301-304
    • /
    • 1998
  • Effects of genotype and culture medium on plant regeneration from cotyledon segments of red pepper(Capsicum annuum L.) was investigated. Among combinations of IAA(0.25 and 0.50 mg/L) and zeatin(2.0 and 4.0 mg/L) added to MS medium, combination of 2.0 mg/L zeatin and 0.25 mg/L IAA was shown to be the best for shoot differentiation from cotyledon segments. Shoot regeneration from cotyledon explants took 9 to 25days, depending on genotypes and culture media. Early shooting was observed in Yeongyangjaelae, Putgochw, Karkovskij-A-35, Gris I-A-1 on MS medium containing 2.0 mg/L zeatin and 0.25 IAA mg/L. Percent of explants producing shoots, as also influenced by genotypes and culture media, were over 90% for 621, Yeongyangjaelae, Putgochw, Nikko jacksacgmulgochw, Ch-6-Num-216, and Kajenskij-A-35 when cultured on MS medum supplemented with 2.0 mg/L zeatin and 0.25 mg/L IAA and for Fresno chile, PI 169126, Kajenskij-A-35, jacksacgmulgochw, and PI 297438 on MS medium including 2.0 mg/L BA and 1.0 mg/L IAA.

  • PDF

Serological Investigation of Virus Diseases of Pepper Plant (Capsicum annum L.) in Korea (혈청학적 방법에 의한 고추의 바이러스병 감염상 조사)

  • 라용준
    • Journal of Plant Biology
    • /
    • v.15 no.1
    • /
    • pp.23-27
    • /
    • 1972
  • A total of 163 virus infected pepper plants(Capsicum annuum L.) collected from various pepper growing regions in Korea were investigated on the presence of tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), potato virus X(PVX), potato virus Y(PVY) and alfalfa mosaic virus (AMV) by serological methods. Van Slogteren's microprecipitin test was applied for the testing of TMV, PVX and PVY from infected plants, and Ouchterlony agar double diffusion test was used for CMV and AMV. Results obtained are as follows: 1. TMV, CMV, PVX, PVY and AMV were found to occur on the pepper plants growing in Korea. 2. The prevalence of each of these viruses among the 163 pepper plants investigated was in the order of CMV: 93 plants(57.0%)>TMV: 91 plants (55.8%)>AMV: 58 plants (35.6%)>PVY: 40 plants (24.5%)> PVX:6 plants(3.7%). 3. Among the 163 plants investigated, 72 plants (44%) showed infection with one kind of virus and 91 plants (56%) showed mixed infection with more than two different viruses. In general, heavier damage of the plants was observed from mixed infection. 4. The results of serological identification of pepper viruses coincided with those results obtained by sap inoculation experiment conducted at the Horticultural Experiment Station along with present investigation. Thus the serological techniques applied in this experiment proved to be very reliable for the identification of TMV, CMV, PVX, PVY and AMV from pepper plants infected with these viruses.

  • PDF

PHYSICAL PROPERTIES OF FRESH RED PEPPER

  • W. J. La;D. B. Song;Lee, S. K.;Lee, T. K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.578-585
    • /
    • 2000
  • Geometrical characteristics of fresh red pepper(Capsicum annuum L.) were measured and indexed to define some important geometrical characteristics, and malformation of body and fruit stalk which are necessary for the design of the equipments for cutting, spreading and alignment of red pepper in developing a fruit stalk remover of fresh red pepper. The effects of bending of body and fruit stalk on the equipments of cutting, spreading and alignment were studied. The maximum lengths of some parts of fresh red pepper were found to be 180 mm, 125 mm, 144 mm, 67 mm and 76 mm for the body, the bent part of body, the fruit stalk, the bent part and the straight part of fruit stalk, respectively. The fresh red pepper with bending indices more than 0.4 and 0.3 for the body and the fruit stalk, respectively, was defined to be malformed based on the result of cutting rate using cutting unit; while the other ones to be normal in shape. Based on this, among the total fresh red peppers tested, 47%, 40% and 20% were found malformed for the body, the fruit stalk, and for both of the body and the fruit stalk. Malformed red peppers were poorer in spreading and alignment than normal ones, and the processed quantity was decreased with increased feed rate. The required time for the malformed peppers to pass on the alignment plate inclined at 30 increased rapidly at 8.3 Hz with increased feed rate. For the fresh red peppers with average moisture content of 85%,w.b., the maximum tensile strength between fruit stalk and body was 88.1 N; the maximum cutting resistances were 92.1 N and 94.9 N for the fruit stalk-calyx joint and body, respectively. Average coefficients of static friction were 0.99, 0.62, 0.59 and OJ, respectively, for the surfaces of rubber, galvanized iron, acryl and plywood.

  • PDF

Changes in Quality Characteristics of Kimchi Added with the Fresh Red Pepper (Capsicum Annuum L.) (홍고추를 첨가한 김치의 숙성 중 품질특성 변화)

  • Hwang, In-Guk;Kim, Ha-Yun;Hwang, Young;Jeong, Heon-Sang;Lee, Jun-Soo;Kim, Hae-Young;Yoo, Seon-Mi
    • Korean journal of food and cookery science
    • /
    • v.28 no.2
    • /
    • pp.167-174
    • /
    • 2012
  • In this study, the changes in the quality characteristics of $Kimchi$ added with fresh red pepper ($Capsicum$ $annuum$ L.) was investigated during 5 months of fermentation at $2^{\circ}C$. The moisture content of $Kimchi$ increased with an increase in the amount of added fresh red pepper, whereas the crude protein, crude lipid, and crude ash content decreased. The initial pH and total acidity of $Kimchi$ containing the fresh red pepper showed ranged from 4.96-5.36 and 0.27-0.33%, respectively. The pH and total acidity rapidly changed within a range of 4.27-4.37 and 0.53-0.55%, respectively, up to 2 months. The fructose and glucose content slowly changed up to 2 months and 3 months, respectively, and then gradually decreased afterwards. The total bacterial and lactic acid bacterial counts of $Kimchi$ containing the fresh red pepper gradually increased up to 2 months and 3 months, respectively, and then decreased thereafter. In addition, there was no difference between the $Kimchi$ containing the fresh red pepper and the control in the sensory evaluation.

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.