• Title/Summary/Keyword: penumbra

Search Result 126, Processing Time 0.029 seconds

Early Restoration of Hypoperfusion Confirmed by Perfusion Magnetic Resonance Image after Emergency Superficial Temporal Artery to Middle Cerebral Artery Anastomosis

  • Eun, Jin;Park, Ik Seong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.816-824
    • /
    • 2022
  • Objective : Emergency superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis in patients with large vessel occlusion who fails mechanical thrombectomy or does not become an indication due to over the time window can be done as an alternative for blood flow restoration. The authors planned this study to quantitatively measure the degree of improvement in cerebral perfusion flow using perfusion magnetic resonance imaging (MRI) after bypass surgery and to find out what factors are related to the outcome of the bypass surgery. Methods : For a total of 107 patients who underwent emergent STA-MCA bypass surgery with large vessel occlusion, the National Institute of Health stroke scale (NIHSS), modified Rankin score (mRS), infarction volume, and hypoperfusion area volume was calculated, the duration between symptom onset and reperfusion time, occlusion site and infarction type were analyzed. After emergency STA-MCA bypass, hypoperfusion area volume at post-operative 7 days was calculated and analyzed compared with pre-operative hypoperfusion area volume. The factors affecting the improvement of mRS were analyzed. The clinical status of patients who underwent emergency bypass was investigated by mRS and NIHSS before and after surgery, and changes in infarct volume, extent, degree of collateral circulation, and hypoperfusion area volume were measured using MRI and digital subtraction angiography (DSA). Results : The preoperative infarction volume was median 10 mL and the hypoperfusion area volume was median 101 mL. NIHSS was a median of 8 points, and the last normal to operation time was a median of 60.7 hours. STA patency was fair in 97.1% of patients at 6 months follow-up DSA and recanalization of the occluded vessel was confirmed at 26.5% of patients. Infarction volume significantly influenced the improvement of mRS (p=0.010) but preoperative hypoperfusion volume was not significantly influenced (p=0.192), and the infarction type showed marginal significance (p=0.0508). Preoperative NIHSS, initial mRS, occlusion vessel type, and last normal to operation time did not influence the improvement of mRS (p=0.272, 0.941, 0.354, and 0.391). Conclusion : In a patient who had an acute cerebral infarction due to large vessel occlusion with large ischemic penumbra but was unable to perform mechanical thrombectomy, STA-MCA bypass could be performed. By using time-to-peak images of perfusion MRI, it is possible to quickly and easily confirm that the brain tissue at risk is preserved and that the ischemic penumbra is recovered to a normal blood flow state.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

A Study on Dose Distribution of Electron Beams by Semiconductor Detector (반도체 검출기에 의한 전자선 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.19-25
    • /
    • 1984
  • There is not yet an universal method of electron dosimetry. The Authors measured dose distributions of the electron beams from Clinac-18 by means of silicon detector connected to X-Y recorder, and compared them in water phantom with dose distributions measured by film and ion chamber, both inserted in polystyrene phantom. The results are as followings, 1. Dose in build-up region increased with the field size for all energy, and depth dose profiles of $6{\sim}12MeV$ beam under the depth of maximum dose were independent of field size, but those of 15 and 18 MeV beam were dependent on the field size. 2. The widths of penumbra by semiconductor detector were narrower than those by film for same energy beam. 3. Depth dose profiles by three different dosimeter did not coincide each other. In the build-up region, dose by semiconductor detector was lower than that by any other dosimeter.

  • PDF

STRUCTURE OF THE PHOTOSPHERIC VECTOR MAGNETIC FIELDS (태양광구의 벡터 자기장 구조)

  • Jo, Gyeong-Seok;Kim, Gap-Seong
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.91-108
    • /
    • 1995
  • We have intensively examined the structure of photospheric magnetic fields obtained from the calculation of the polarized radiation transfer for the model atmosphere. To determine more reliable magnetic field in the photospheric region composed of umbra, penumbra and quite area, we have calculated the polarized radiative transfer for a magnetically sensitive spectral line, FeI $6302.5{\AA}$, using our composite model representing three kinds of the atmospheric area distinguished by the pixel value of the Stokes I image over the region. Polarization data of the full Stokes parameters, used in this paper had been obtained from the vector magnetograph on Solar Flare Telescope of National Astronomical Observatory at Mitaka(MTK) in Japan. According to our investigation on the active region in the photosphere, it has been found that the large current density(${\geq}8{\times}10^2A/km^2$) and shear angle(${\geq}85^{\circ}$) should be distributed along the magnetic neutral line. To be compared with the results of MTK, our results in transverse magnetic field strength and direction are similar with those of MTK, however our longitudinal field strength at the center of the spot is somewhat(${\sim}1000$ Gauss) larger than MTK.

  • PDF

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

Neuroprotective Effects of Guh-Poong-Chung-Sim-Hwan on Focal Cerebral Ischemia in Rats

  • Lim, Ha-Sup;Kim, Jeung-Beum
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.246-253
    • /
    • 2005
  • This study was designed to investigate the neuroprotective effects of Guh-Poong-Chung-Sim-Hwan(GCH) on ischemia induced by middle cerebral artery occlusion(MCAO) in Sprague-Dawley rats. The effects of GCH administration on the size of the brain infarct and the functional status of the rats after ischemia were examined, as well as the expression of COX-2 in acute phase. The recovery of motor functions for 7 days and the brain infarct were examined to find out the delayed effects of daily GCH-administration as well. In conclusion, we found that GCH reduced both functional deficits and brain damage in the MCAO rat model of stroke. In addition, high doses of GCH reduced COX-2 expression in the penumbra. It is well known that herbal medication including GCH is very safe for humans. Accordingly, our results support the clinical use of this GKM for the treatment of stroke and offer the possibility that a potent neuroprotective agent could be developed from Korean herbal medicines.

Swarm Satellite Observations of the 21 August 2017 Solar Eclipse

  • Hussien, Fayrouz;Ghamry, Essam;Fathy, Adel;Mahrous, Salah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.29-34
    • /
    • 2020
  • On 21 August 2017, during 16:49 UT and 20:02 UT period, a total solar eclipse started. The totality shadow occurred over the United States in time between ~17:15 UT and ~18:47 UT. When the solar radiation is blocked by the moon, observations of the ionospheric parameters will be important in the space weather community. Fortunately, during this eclipse, two Swarm satellites (A and C) flied at about 445 km through lunar penumbra at local noon of United States in the upper ionosphere. In this work, we investigate the effect of the solar eclipse on electron density, slant total electron content (STEC) and electron temperature using data from Swarm mission over United States. We use calibrated measurements of plasma density and electron temperature. Our results indicate that: (1) the electron density and STEC have a significant depletion associated with the eclipse; which could be due to dominance of dissociative recombination over photoionization caused by the reduction of ionizing extreme ultraviolet (EUV) radiation during the eclipse time (2) the electron temperature decreases, compared with a reference day, by up to ~150 K; which could be due to the decrease in photoelectron heating from reduced photoionization.

Monte Carlo Calculation of the Dose Profiles for a 6 MeV Electron Beam with Longitudinal Magnetic Fields

  • Jeong, Dong-Hyeok;Oh, Young-Kee;Kim, Jhin-Kee;Kim, Jeung-Kee;Shin, Kyo-Chul;Kim, Ki-Hwan;Lee, Jeong-Ok;Kang, Jeong-Ku;Moon, Sun-Rock
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.109-112
    • /
    • 2002
  • Using Monte Carlo calculations the effects of longitudinal magnetic fields on the beam profiles produced by clinical electron beam were studied. The Monte Carlo calculations were performed using the EGS4 code system modified to account for external magnetic fields. The beam profiles for a 6 MeV electron beam with longitudinal magnetic fields of 0.5-3.0 T were calculated. As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This means that the electron therapy benefits from the external magnetic fields.

  • PDF

Paradigm Shift in Intra-Arterial Mechanical Thrombectomy for Acute Ischemic Stroke : A Review of Randomized Controlled Trials after 2015

  • Sheen, Jae Jon;Kim, Young Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • Three randomized control trials (RCTs), published in 2013, investigated efficacy of mechanical thrombectomy in large vessel occlusions and did not show better results compared to intravenous (IV) recombinant tissue-type plasminogen activator (tPA) alone. However, most clinicians treating stroke consider mechanical thrombectomy as the standard treatment rather than using IV tPA alone. This paradigm shift was based on five RCTs investigating efficacy of mechanical thrombectomy in acute ischemic stroke conducted from 2010 to 2015. They demonstrated that mechanical thrombectomy was effective and safe in acute ischemic stroke with anterior circulation occlusion when performed within 6 hours of stroke onset. There are four reasons underlying the different results observed between the trials conducted in 2013 and 2015. First, the three RCTs of 2013 used low-efficiency thrombectomy devices. Second, the three RCTs used insufficient image selection criteria. Third, following the initial presentation at the hospital, reperfusion treatment required a long time. Fourth, the three RCTs showed a low rate of successful recanalization. Time is the most important factor in the treatment of acute ischemic stroke. However, current trends utilize advanced imaging techniques, such as diffusion-weighted imaging and multi-channel computer tomographic perfusion, to facilitate the detection of core infarction, penumbra, and collateral flows. These efforts demonstrate that patient selection may overcome the barriers of time in specific cases.

Neuroprotective Effect Yanggyuksanhwa-tang on Cerebral Infarction Induced by MCAO in Hyperlipidemic Rats (양격산화탕(凉膈散火湯)이 고지혈증 흰쥐의 중대뇌동맥 폐쇄에 의한 뇌경색에 미치는 영향)

  • Oh, Kyung-Hwan;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.915-926
    • /
    • 2006
  • Objectives : Yanggyuksanhwa-tang is a prescription used for cerebral infarction clinically it is known that this formula reduces body fat, serum cholesterol and triglyceride in hyperglycemia and obesity patients. According to previous research data, controlling these types of lipid is considered to decrease the risk of cerebral infarction. Based on this fact, we investigated the relationship between hyperlipidemia and cerebral infarction, and the effect of Yanggyuksanhwa-tang on hyperlipidemic cerebral infarction. Methods : We induced cerebral infarction by middle cerebral artery occlusion (MCAO) in high-fat diet rats, and the rats were administered Yanggyuksanhwa-tang. Results : Infarct area and serum lipid were measured, and the level of elements such as c-Fos, Bax and caspase-3 in penumbra of infarct were expressed by immunohistochemical staining. Conclusions : Yanggyuksanhwa-tang showed neuroprotective effect through preventing neuronal cell apoptosis as well as reducing serum lipid level in hyperlipidemic condition.

  • PDF