• Title/Summary/Keyword: pentose

Search Result 90, Processing Time 0.026 seconds

Comparative Studies on the Utilization of Glucose in the Mammary Gland of Crossbred Holstein Cattle Feeding on Different Types of Roughage during Different Stages of Lactation

  • Chaiyabutr, N.;Komolvanich, S.;Preuksagorn, S.;Chanpongsang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.334-347
    • /
    • 2000
  • The present experiment was carried out to study the utilization of glucose in the mammary gland of crossbred Holstein cattle during feeding with different types of roughage. Sixteen first lactating crossbred Holstein cattle which comprised eight animals of two breed types, Holstein Friesian${\times}$Red Sindhi ($50{\times}50=50%$ HF) and Holstein Friesian${\times}$Red Sindhi ($87.5{\times}12.5=87.5%$ HF). They were divided into four groups of 4 animals each of the same breed. The utilization of glucose in the mammary gland was determined by measuring rates of glucose uptake and the incorporation of glucose into milk components in both groups of 50% HF and 87.5% HF animals feeding on either hay or urea treated rice straw. In early lactation, there were no significant differences of the total glucose entry rate and glucose carbon recycling among groups of crossbred animals feeding on either hay or urea treated rice straw. During lactation advance, the total glucose turnover rates and recycling of carbon glucose of crossbred HF animals feeding on urea treated rice straw were markedly higher than those of crossbred HF animals feeding on hay as roughage, whereas there were no significant changes for both groups of crossbred animals feeding on hay. The percentages and values of non-mammary glucose utilization showed an increase during lactation advance in the same group of both 50% HF and 87.5% HF animals. The percentage of glucose uptake for utilization in the synthesis of milk lactose by the mammary gland was approximately 62% for both groups of 87.5% HF and by approximately 55% for both groups of 50% HF animals feeding on either hay or urea treated rice straw. Intracellular glucose 6-phosphate metabolized via the pentose phosphate pathway accounted for the NADPH (reducing equivalent) of fatty acid synthesis in the mammary gland being higher in 87.5% HF animals during mid-lactation. A large proportion of metabolism of glucose via the Embden-Meyerhof pathway in the mammary gland was more apparent in both groups of 50% HF animals than those of 87.5 % HF animals during early and mid-lactation while it markedly increased for both groups of 87.5% HF animals during late lactation. It can be concluded that utilization of glucose in the mammary gland occurs in a different manner for 50% HF and 87.5% HF animals feeding on either hay or urea treated rice straw. The glucose utilization for biosynthetic pathways in the mammary gland of 50% HF animals is maintained in a similar pattern throughout the periods of lactation. A poorer lactation persistency in both groups of 87.5% HF animals occurs during lactation advance, which is related to a decrease in the lactose biosynthetic pathway.

Comparative Study on Ethanol Production with Pentose and/or Hexose by Saccharomyces cerevisiae and/or Pichia stipitis (Saccharomyces cerevisiae와 Pichia stipitis를 이용한 오탄당과 육탄당으로부터 에탄올 생산에 관한 비교연구)

  • Kim, Jung-Gon;Ahn, Jung-Hoon
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Glucose and xylose are the most abundant materials in nature which can be used to produce ethanol by yeast fermentation. Three combinations of cultivation with glucose and xylose were carried out; separated, co-culture, and sequential fermentation with Saccharomyces cerevisiae and Pichia stipitis. In the separated fermentation, S. cerevisiae fermented glucose to produce 14.5 g/l ethanol from 29.4 g/l glucose but hardly used xylose. However, P. stipitis utilized not only glucose but also xylose to produce ethanol 11.9 g/l and 11.6 g/l from 29.4 g/l glucose and 29.0 g/l xylose, respectively. In the mixture of glucose and xylose, P. stipitis fermented both sugars, producing 21.1 g/l ethanol while S. cerevisiae fermented only glucose, producing 13.4 g/l ethanol. In the co-culture and sequential fermentation, the co-culture showed more efficient ethanol productivity with 18.6 g/l ethanol than the sequential fermentation with 12.4 g/l ethanol. To investigate the effect of nutrients in the growth of microorganisms and ethanol production, yeast nitrogen base (YNB) was used in the sequential fermentation with S. cerevisiae and P. stipitis. YNB supplemented some nutrients which S. cerevisiae used up in the broth and the culture showed increased growth rate, increased consumption of xylose, and increased ethanol productivity producing 22.5 g/l ethanol from 54.6 g/l sugar with a yield of 0.41 g/g.

Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2

  • Roshankhah, Shiva;Rostami-Far, Zahra;Shaveisi-Zadeh, Farhad;Movafagh, Abolfazl;Bakhtiari, Mitra;Shaveisi-Zadeh, Jila
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.193-198
    • /
    • 2016
  • Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as $H_2O_2$. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of $H_2O_2$, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Methods: Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and $120{\mu}M$ concentrations of $H_2O_2$. After 1 hour incubation at $37^{\circ}C$, sperms were evaluated for motility and viability. Results: Incubation of sperms with 10 and $20{\mu}M\;H_2O_2$ led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and $80{\mu}M\;H_2O_2$, and viability decreased in both groups in 40, 60, 80, and $120{\mu}M\;H_2O_2$. However, no statistically significant differences were found between the G6PD-deficient group and controls. Conclusion: G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by $H_2O_2$, and the reducing equivalents necessary for protection against $H_2O_2$ are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

Effect of Sugars on Cell Growth and Lipase Production by Trichosporon cutaneum (Trichosporon cutaneum의 균체생육(菌體生育) 및 Lipase 생산(生産)에 미치는 당류(糖類)의 영향)

  • Kim, Seung-Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.105-111
    • /
    • 1977
  • Inhibitory effect of sugars on lipase production by Trichosporon cutaneum was observed in the previous study (Kim, 1972), and inhibition was distinctive by the addition of glucose, fructose, mannose, xylose and arabinose to the soybean meal medium among various carbon sources. These experiments were carried out to study the effect of sugars on cell growth and lipase production by the strain using the soybean extracts liquid medium under a shaking culture system. Changes in color and pH of the medium were caused by heat sterilization when various sugars were added. To elucidate the possible effect of these coloring matters on lipase production and cell growth: changes in pH of the culture, cell concentration and level of the enzyme activities were determined when the culture was grown for 48 hours at $30^{\circ}C$ on a reciprocal shaker. The results obtained were as follows: 1. Density of brownish color which formed during heat sterilization was varied with the variety of sugar used, ie, strong in pentose such as xylose: weak in hexose such as galactose, mannose, glucose: very weak in disaccharide such as maltose, sucrose. When the color density was stronger, decrease in pH after sterilization was marked. 2. Cell growth and lipase production was not so effect by the coloring matters as by sugars. 3. The more the cell mass of the culture, the lower the level of lipase production in the culture supernatant. 4. Among the sugars which caused the distinctive inhibition of lipase production, a slight relief of inhibition was noticed by the addition of xylose, whereas the cell growth was repressed. 5. When cell growth was better, decrease in pH of the medium was greater during cultivation.

  • PDF

Development of Meat-like Flavor by Maillard Reaction of Model System with Amino acids and Sugars (Meat-like Flavor 개발을 위한 당-아미노산 Model System에서의 Maillard 반응)

  • Ko, Soon-Nam;Yoon, Suk-Hwan;Yoon, Suk-Kwon;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.827-838
    • /
    • 1997
  • Optimal substrates and reaction conditions were studied to develop boiled or roasted meat flavor by Maillard reaction under a model system. Sugars for the reactions were xylose, ribose, glucose, lactose, maltose, and sucrose. Amino acids were cystine, cysteine, methionine, lysine, and glycine as the reaction substrates. The reacted solutions were measured their absorbances at 278 nm and 420 nm and were evaluated their sensory properties. Except cysteine, the pentose mixtures with all of the four amino acids showed a faster reaction rate than those mixtures with hexose or disaccharides. pH was decreased rapidly until 8 hours and then changed a little thereafter. Sensory evaluation showed that cystine-lactose or cystine-xylose from single substrate and cystine-lactose-maltose, and cystine-lactose-xylose from mixed substrates reacted at $100^{\circ}C$ for 16 or 20 hours were found to be close to boiled or roasted meat flavor. The volatile compounds from the four selected sugar-amino acid solutions by GC/MS were 8 hydrocarbons, 10 aldehydes, 6 ketones, 7 alcohols, 2 aromatics (benzene), 1 ester, 4 furans, 1 base and 5 sulfur compounds.

  • PDF

The Mitochondrial Warburg Effect: A Cancer Enigma

  • Kim, Hans H.;Joo, Hyun;Kim, Tae-Ho;Kim, Eui-Yong;Park, Seok-Ju;Park, Ji-Kyoung;Kim, Han-Jip
    • Interdisciplinary Bio Central
    • /
    • v.1 no.2
    • /
    • pp.7.1-7.7
    • /
    • 2009
  • "To be, or not to be?" This question is not only Hamlet's agony but also the dilemma of mitochondria in a cancer cell. Cancer cells have a high glycolysis rate even in the presence of oxygen. This feature of cancer cells is known as the Warburg effect, named for the first scientist to observe it, Otto Warburg, who assumed that because of mitochondrial malfunction, cancer cells had to depend on anaerobic glycolysis to generate ATP. It was demonstrated, however, that cancer cells with intact mitochondria also showed evidence of the Warburg effect. Thus, an alternative explanation was proposed: the Warburg effect helps cancer cells harness additional ATP to meet the high energy demand required for their extraordinary growth while providing a basic building block of metabolites for their proliferation. A third view suggests that the Warburg effect is a defense mechanism, protecting cancer cells from the higher than usual oxidative environment in which they survive. Interestingly, the latter view does not conflict with the high-energy production view, as increased glucose metabolism enables cancer cells to produce larger amounts of both antioxidants to fight oxidative stress and ATP and metabolites for growth. The combination of these two different hypotheses may explain the Warburg effect, but critical questions at the mechanistic level remain to be explored. Cancer shows complex and multi-faceted behaviors. Previously, there has been no overall plan or systematic approach to integrate and interpret the complex signaling in cancer cells. A new paradigm of collaboration and a well-designed systemic approach will supply answers to fill the gaps in current cancer knowledge and will accelerate the discovery of the connections behind the Warburg mystery. An integrated understanding of cancer complexity and tumorigenesis is necessary to expand the frontiers of cancer cell biology.

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response

  • Gong, Xiao-Xiao;Yan, Bing-Yu;Hu, Jin;Yang, Cui-Ping;Li, Yi-Jian;Liu, Jin-Ping;Liao, Wen-Bin
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1181-1197
    • /
    • 2018
  • Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at $4^{\circ}C$ for 2 h) and LT24 (cold treatment at $4^{\circ}C$ for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Studies on the quantitative changes of Organic acid and Sugars during the fermentation of Takju (탁주(濁酒) 양조중(釀造中) 유기산(有機酸) 및 당류(糖類)의 소장(消長)에 관(關)한 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.4
    • /
    • pp.33-42
    • /
    • 1963
  • 1. Two fermentation methods have been compared for the production of Takju (Korean native Sake). One method (S1) uses 'Nuruk' (Korean mold wheat) and the other method (S2) uses 'Nuruk' and mold rice. The chemical analysis of source material, also, have been made in order the check the quantitative changes during the fermentation. The results are summarized below: a. The rate of fermentation was slower for the S2 method than for the S1 method. However, the residual sugar in the S2 method was smaller and the amount of alcohol produced the same as with the S1 method. This was true in spite of the fact that the total initial sugar content for the S2 method was 10 percent below that of S1. b. With both the S1 and S2 methods, 80 percent of the total alcohol production was obtained with in 3 to 4 days. c. The pH value of the base material at the beginning of fermentation was markedly different between the two methods I.e.6.0 to 6.2 for S1 and 4.8 to 5.2 for S2. However, after one or two day the pH of both materials was about the same 4.0 to 4.2 and remained at this value unit the fermentation was complete. 2. Organic acids and Sugars in the source materials have been detected by the paper partition chromatography(p.p.c.) method and the followings are obtained. a. Important Organic acids are Fumalic, malic Succinic, Citric, Acetic aicds in polished rice and Fumalic, Succinic, Acetic, Citric, Malic and Oxalic acids 'Nuruk'. The same kinds of acids as in the rice are found in mold rice, However, amount of Citrice acid is markedly increased in mold rice. b. The important Sugar, Glucose, Fructose and Raffinose in polished rice, Gulcose, Fructo, se, Xylose and one which supposed to be Kojibjose in 'Nuruk'. Glucose and those supposed to be Isomaltose, Kojibiose and Sakebiose and found in rice mold, however, no Sucrose, which was exist in polished rice, was found. 3. The important Organic acids found in fermenting mash using the p.p.c. method were Lactic, Succinic and Acetic. Citric acid identified early in the fermentation, S2 method. remained throughout. However, with the S1 method Cirtic acid was detected only during the late stage of fermentation. Sugars not found in the original materials were two which supposed to be Isomaltotriose and Pentose. Maltose found at the beginning of the fermentation disappeared within one day, Isomaltose was detected throughout the period of fermentation. 4. The Somogyi method which was employed to determine the quantitative changes of sugars in the orginal meterial and mach, showed that polished rice containes in order and in largest amounts Sucrose, Glucose, Raffinose and Fructose. 'Nuruk' contained almost equal quantities of Glucose and Fructose. However, the Glucose content of the mold rice exceeded that originally in the polished rice by 25 or 30 times. Only a small quantity of free sugars was found in the mash at the end of the fermentation.

  • PDF