• Title/Summary/Keyword: penetration resistance

Search Result 759, Processing Time 0.027 seconds

Heat Transfer Characteristics of Bulkhead Penetration Piece for A60 Class Compartment I: Transient Thermal (A60급 구획 적용 격벽 관통용 관의 열전달 특성 I: 관의 설계에 따른 과도 열해석)

  • Park, Woo-Chang;Song, Chang Yong;Na, Ok-Gyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.310-323
    • /
    • 2018
  • In order to protect lives and prevent large-scale injuries in the event of a fire on a ship or an offshore plant, most classification societies are strengthening their fire resistance designs of relevant cargo holds and accommodation compartments to keep flames from being transferred from a fire point to other compartments. Particularly in critical compartments, where flames should not propagate for a certain period of time, such as the A60 class division, both the airtightness and fire-resistant design of a piece passing through a bulkhead are subject to the Safety of Life at Sea Convention (SOLAS) issued by the International Maritime Organization (IMO). In order to verify the suitability of a fire-resistant design for such a penetrating piece, the fire test procedure prescribed by the Maritime Safety Committee (MSC) must be carried out. However, a numerical simulation should first be conducted to minimize the time and cost of the fire resistance test. In this study, transient thermal analyses based on the finite element method were applied to investigate the heat transfer characteristics of a bulkhead penetration piece for the A60 class compartment. In order to determine a rational bulkhead penetration piece design, the transient heat transfer characteristics according to the variation of design parameters such as the diameter, length, and material were reviewed. The verification of the design specification based on a numerical analysis of the transient heat transfer performed in this study will be discussed in the following research paper for the actual fire protection test of the A60 class bulkhead penetration piece.

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.

Normalization of Cone Resistance in Granular Soil (모래지반에서 콘 저항값의 정규화에 관한 연구)

  • Na Yung-Mook
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.33-45
    • /
    • 2004
  • Sandfill at reclaimed sites is usually formed by more than one placement method. Reclaimed sandfill often shows highly variable profiles and the cone penetration test is most commonly used for site characterization. Correlations between cone resistance and geotechnical parameters for sand are influenced by in-situ stress level and it is important to incorporate stress level effect. In this study, cone penetration tests were performed at several elevations from the top of a 10m high surcharge, which was later removed step by step. In order to establish more reliable correlations between cone resistance and geotechnical parameters for sand, different ways of normalizing cone resistance by the corresponding in-situ vertical stress were investigated.

A Study on the Resistance to Seawater Attack of Mortars and Concretes Incorporating Limestone Powder (석회석미분말을 혼입한 모르타르 및 콘크리트의 내해수성 연구)

  • Lee, Seung Tae;Jung, Ho Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • This study aims to evaluate the resistance to seawater attack of mortars and concretes incorporating limestone powder (0, 10, 20 and 30% of cement by mass). In order to achieve this goal, both chemical resistance by seawater and chloride ions penetration resistance of mortars or concretes were regularly monitored. From the test results, it was observed that the durability of cement matrix was greatly dependent on the replacement ratios of limestone powder. In other words, performance of cement matrix with 10% limestone powder was similar to that of OPC matrix. However, it was found that a high replacement ratio of limestone powder was ineffective to resist seawater attack.

Field Investigation of Chloride Penetration and Evaluation of Corrosion Characteristics for Deicer (염화물 침투 현장조사 및 제설제에 따른 부식특성)

  • Yang, Eun-Ik;Kim, Myung-Yu;Park, Hae-Geun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.47-52
    • /
    • 2008
  • Deicer has been generally used for prevention of a road freezing in winter, and the usage amount is increasing every year. However, deicer may induce the decrease of bond strength, surface scaling, and environmental pollution. In this study, the field test was performed to investigate the deterioration of concrete road structures used for 17 years. And, the corrosion resistance characteristics were compared for the existing deicer and eco-friendly deicer. According to the field test results, the penetration depth of limit chloride amount was about 40mm, and the average concentration of chloride was $3.45kg/m^3$ at the surface of structures. On the contrary, the carbonation depth was slight. The penetration depth of eco-friendly deicer was less than the existing deicer, and the corrosion resistance of eco-friendly deicer was higher.

A Study on the Engineering Properties of Alluvial clay in the Daebul Reclaimed Tideland (대불간척지 충적점토의 공학적 특성에 관한 연구)

  • 김홍일;진병익;유기송
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 1984
  • This study was made to find several significant relations among various physical and mechanical properties including cone penetration resistance. The alluvial clay samples were taken at the Daebul Reclaimed Tideland in Samhomyeon, Yeongamgun, Jeonranamdo. The results of the study are summarized as follows; 1.Most samples belong to medium or high plastic, inorganic, silty clay(clay contents;32-64%, silt contents; 36-68%, sand contents; 0-3%). The specific gravities range from 2.70 to 2.73, the unit weights from 1.45 to 1. 75g/cm$^3$, the natural moisture contents from 45 to 77%, the liquid limits from 32 to 56%. It is certain that the foundation is weak because the natural moisture contents are much higher than the liquid limits. 2.It is known from the shear tests that the unconfined compression strenghs vary from 0.09 to 0. 38kg/cm2, the cohesions from 0.05 to 0. 21kg/cm2, the internal friction angles from 0 to 3˚. 3.The consolidation tests show that the initial void ratios range from 1.25 to 2.28, the compression indeices from 0.43 to 0.84, the preconsolidation loads from 0.21 to 0.74kg/cm$^2$. 4.Cone penetration resistances are usually less than 5kg/cm$^2$ from ground surface to the depth of about 8m, and from S to l0kg/cm$^2$ in the layer below about 8m to hard layer. 5.The cohesion and cone penetration resistance are in proportion to the depth of soil layer. 6.The correlations between various physical and mechanical properties including cone penetration resistance for the alluvial clay samples are as follows; a) Wn=0.944C+ l2.733 (r=0.829) b) LL=0. 728Cy+6. 991 (r=0. 873) c) PI=0.659Cy-8.168 (r=0.860) d) rt=0. 0077(272-Wn) =2.092-0. 0077Wn (r=0. 859) e) 60=0. 035wn-0 447 (r=0. 893) f) C=0.380qw+0.031 (r=0.816) g) qu=0.0707qc+0.029 (r=0.810) h) C=0.018Z+0.055 (r=O.802) I) qc=0. 415Z+1, 438 (r=0. 943)

  • PDF

Estimation of Setting Time of Concrete Using Rubber Hardness Meter (고무경도계를 이용한 콘크리트의 응결시간 추정 가능성 분석)

  • Han, Min-Cheol;Han, In-Deok;Shin, Yong-Sub
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.358-366
    • /
    • 2019
  • The purpose of this study is to explore the possibility of estimating optimum surface finishing work time of the fresh concrete placed at the job site by applying a surface hardness test meter(Durometer). Tests are carried out by measuring and comparing the Proctor penetration resistance test and hardness test by Durometer. Correlations between Procter penetration test and hardness test by Durometer were obtained. Two different types Durometer were applied to estimate setting time. Test results indicate that the measurement of the Durometer and the test of the Proctor penetration resistance are highly correlated. When measuring the initial setting time with Durometer, initial setting time is reached when the hardness value by the type C Durometer is reached around 42HD, and when final setting is measured with the type D Durometer, the surface finishing work time limit and curing time can be estimated with 10HD of Durometer.

Design for Installation of Suction Piles in Sand Deposits for Mooring of Floating Offshore Structures (부유식 해상구조물의 계류를 위한 사질토 지반의 석션파일 설계)

  • Park, Chul-Soo;Lee, Ju-Hyung;Baek, Du-Hyun;Do, Jin-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.33-44
    • /
    • 2014
  • The preliminary design of suction pile as the supporting system for concrete floating structures was performed for the pilot project of the southwest coast area in Korea. Prior to starting design work, site conditions of the area including ground and hydraulic conditions, and a 100-year return period external force were throughly evaluated. The suction pile for mooring of the offshore floating structures has to satisfy the lateral resistance against external force as well as the penetration ability according to the soil conditions such as soil types, shear strengths, effective stresses, and seepage forces. In the design, the required penetration depths, which were stable for lateral resistance, were evaluated with the diameters of cylindrical suction pile as the final installing ones. And the design suction pressures at each penetrating depths, at which sand boiling did not occur, were assessed through the comparison of penetration and penetrationresistance forces. As a result, it was impossible for suction piles with the diameter range of 3.0~5.0 m to penetrate into required penetration depths. On the other hand, suction piles with the diameter range of 6.0 m and 7.0 m satisfied both the horizontal stability and the penetration ability by design suction pressures at the required penetration depths of 8.5 m and 8.0 m, respectively.

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.

A Hydration based Model for Chloride Penetration into Slag blended High Performance Concrete

  • Shin, Ki-Su;Park, Ki-Bong;Wang, Xiao-Yong
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • To improve the chloride ingress resistance of concrete, slag is widely used as a mineral admixture in concrete industry. And currently, most of experimental investigations about non steady state diffusion tests of chloride penetration are started after four weeks standard curing of concrete. For slag blended concrete, during submerged chloride penetration tests periods, binder reaction proceeds continuously, and chloride diffusivity decreases. However, so far the dependence of chloride ingress on curing ages are not detailed considered. To address this disadvantage, this paper shows a numerical procedure to analyze simultaneously binder hydration reactions and chloride ion penetration process. First, using a slag blended cement hydration model, degree of reactions of binders, combined water, and capillary porosity of hardening blended concrete are determined. Second, the dependences of chloride diffusivity on capillary porosity of slag blended concrete are clarified. Third, by considering time dependent chloride diffusivity and surface chloride content, chloride penetration profiles in hardening concrete are calculated. The proposed prediction model is verified through chloride immersion penetration test results of concrete with different water to binder ratios and slag contents.