• Title/Summary/Keyword: penetration enhancement

Search Result 93, Processing Time 0.03 seconds

The Effect of Enhancers on the Penetration of Albuterol through Hairless Mouse Skin

  • Choi, Han-Gon;Rhee, Jong-Dal;Yu, Bong-Kyu;Kim, Jung-Ae;Kwak, Mi-Kyung;Woo, Jong-Soo;Oh, Dong-Hun;Han, Myo-Jung;Choi, Jun-Young;Piao, Mingguan;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.321-329
    • /
    • 2006
  • Albuterol, a selective ${\beta}_2$-adrenergic receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease, chronic bronchitis and pulmonary emphysema. The percutaneous permeation of albuterol sulfate was investigated in hairless mouse skin in vitro with and without pretreatment with enhancers. The enhancing effects of ethanol and various penetration enhancers such as terpenes, non-ionic surfactants, pyrrolidones, and fatty acids on the permeation of albuterol sulfate were evaluated using Franz diffusion cells. Among terpenes studied, 1,8-cineole was the most effective enhancer, which increased the permeability of albuterol sulfate approximately 33-fold compared with the control without enhancer pretrement, followed by d-limonene with enhancement ratio of 21.79. 2-Pyrrolidone-5-carboxylic acid increased the permeability of albuterol sulfate approximately 5.5-fold compared with the control. Other pyrrolidones tested showed only slight permeability enhancing effect with enhancement ratio less than 2.8. Nonionic surfactants showed moderate enhancing effects. Lauric acid increased the permeability of albuterol sulfate approximately 30-fold with decreasing the lag time from 2.85 to 0.64 hr. Oleic acid and linoleic acid showed enhancement ratio of 24.55 and 22.91, respectively. These findings would allow a more rational approach for designing formulations for the transdermal delivery of albuterol sulfate and similar drugs.

Ocular transport of hydrophilic drugs: Enhancement of the paracellular penetration across cornea and conjunctiva in the rabbit (수용성약물의 안점막 투과기전에 관한 연구: 토끼의 각막 및 결막 세포간극경로의 투과촉진)

  • Chung, Youn-Bok;Lyoo, Seen-Suk;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • The objective of this study was to determine whether 4-phenylazobezyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-peptide), an enhancer of hydrophilic solute permeability in the intestine, could elevate the paracellular permeability of hydrophilic drugs across cornea and conjunctiva in the rabbit. The in-vitro penetration of hydrophilic drugs (mannitol, atenolol) and lipophilic drug (propranolol) across the rabbit cornea and conjunctiva was studied either in the presence or absence of 3 mM Pz-peptide. Drug penetration was evaluated using the modified Ussing chamber. The conjunctiva was more permeable than the cornea to all drugs. Pz-peptide showed enhanced effects on the drug transport across cornea and conjunctiva in a concentration dependent manner. Effects or ion transport inhibitor on the mannitol penetration were then investigated. Mannitol penetration was not changed by serosal addition of $100\;{\mu}M$ ouabain, suggesting that $Na^+/K^+$ ion tranporter was not involved in the Pz-peptide induced elevation of paracellular drug permeability. Furthermore, effects of Pz-peptide and EDTA on the transport of atenolol and propranolol into the ocular tissues or blood circulation after its administration into both eyes were investigated. EDTA showed enhanced effect on propranolol transport into the ocular tissues, but Pz-peptide did not show significant difference. Systemic absorption of propranolol by the addition of EDTA or Pz-peptide was not changed. On the other hand, EDTA and Pz-peptide elavated the atenolol transport into the ocular tissues. The transport of atenolol into the blood circulation was also enhanced by the addition of EDTA, but no effect was observed by the addition of Pz-peptide. The above findings suggest that Pz-peptide would be used as an paracellular pathway enahncer of hydrophilic drugs into the eye, without affecting the systemic absortion of topically applied opthalmic drugs.

  • PDF

Corrosion resistant self-compacting concrete using micro and nano silica admixtures

  • Jalal, Mostafa
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.403-412
    • /
    • 2014
  • In this paper, enhancement of corrosion and chloride resistance of high performance self compacting concrete (SCC) through incorporating nanosilica into the binder has been investigated. For this purpose, different mixtures were designed with different amounts of silica fume and nano silica admixtures. Different binder contents were also investigated to observe the binder content effect on the concrete properties. Corrosion behavior was evaluated by chloride penetration and resitivity tests. Water absorption and capillary absorption were also measured as other durability-related properties. The results showed that water absorption, capillary absorption and Cl ion percentage decreased rather significantly in the mixtures containing admixtures especially blend of silica fume and nano silica. By addition of the admixtures, resistivity of the SCC mixtures increased which can lead to reduction of corrosion probability.

Skin penetration enhancement of prostaglandin El and its ethyl ester for topical formulations

  • Kim, Hee-Kyu;Kim, Jong-Seok;Yang, Sung-Woon;Choi, Han-Gon;Yong, Chul-Soon;Choi, Young-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.224.3-225
    • /
    • 2003
  • Purpose. To investigate the effect of different terpene enhancers on skin penetrations of prostaglandin El (PGE1) and its ethyl ester (PGE1-EE), a therapeutic agent for erectile dysfunction, external gel systems were formulated with the specific enhancers having different values in their lipophilicity (log P was ranged in 2.23-4.58). Methods. Topical gels containing PGEl (0.5 %) and PGEl-EE (0.1 %) were formulated with ethanol and propylene glycol as a vehicle, selective terpenes as a penetration enhancer, and HPC-H as a thickening agent. (omitted)

  • PDF

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.

Improved Fertilization Rate in Human In vitro Fertilization with the Use of a TEST-Yolk Buffer (TEST-Yolk Buffer에 의한 인간 정자의 수정능 증진효과에 관한 연구)

  • Pang, Myung-Geol;Kim, Ki-Chul;Shin, Chang-Jae;Moon, Shin-Yong;Lee, Jin-Yong;Chang, Yoon-Seok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 1992
  • The present study was undertaken to clarify the role of TEST-Yolk Buffer(TYB) as a factor for the improvement of human sperm fertility potential. We examined the effects of low temperature capacitation using TYB on sperm motility (%), motility pattern, normal morphology, true acrosome reaction, sperm penetration assay and human in vitro fertilization. Comparing the TYB method and swim-up method, the sperm motility(%) of selected sperm was not significantly different, but statistically significant differences were found in curvilinear velocity, linearity, lateral head displacement, normal morphology(%) and true acrosome reaction(%)(p<0.05). Results obtained from the sperm penetration assay demonstrated that the penetration index and penetration rate were increased significantly(p<0.05) when the spermatozoa were incubated in TYB, as compared with swim-up method. And fertilization of intact human oocytes was more succesful when spermatozoa were pretreated with TYB at $4^{\circ}C$ for 48 hours as compared with swim-up method. Our results show that TYB method have advantages in terms of enhancement of sperm hyperactivation, increased true acrosome reaction, increased ability to penetrate zona-free hamster ova and augmented fertilization of human oocytes, suggesting that TYB is superior in its ability to preserve sperm motility and fertilizing ability.

  • PDF

Durability assessment of self-compacting concrete with fly ash

  • Deilami, Sahar;Aslani, Farhad;Elchalakani, Mohamed
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • Self-Compacting Concrete (SCC) is a new technology capable to flow without segregation or any addition of energy which leads to efficient construction and cost savings. In this study, the effect of replacing the Ordinary Portland Cement (OPC) with Fly Ash (FA) on the strength, durability of the concrete was investigated experimentally, and carbon footprint and cost were also assessed. Four different replacement FA ratios (0%, 20%, 40% and 60%) were used to create four SCC mixes. Standard test methods were used to determine the workability, strength, and durability of the SCC mixes including resist chloride ion penetration, water permeability, water absorption, and initial surface absorption. The axial cube compressive strength tests were performed on the SCC mixes at 1, 7, 14, 28 and 35 days. Replacing the OPC with FA had a significant positive impact on chloride iron penetration resistance and water absorption but had a considerable negative impact on the compressive strength. The SCC mix with 60% FA had 36.7% and 15.8% enhancement in the resistance to chloride ion penetration and water absorption, respectively. Evaluation of the carbon footprint and the cost of each SCC mixes showed the $CO_2$ emissions mixes 1, 2, 3 and 4 were significantly reduced by increasing the FA content from 0% to 60%. Compared with the control mix, the cost of all mixes increased when the FA content increased, but no significant differences were seen between the estimated costs of all four mixes.

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.

Percutaneous Absorption Characteristics of Antidepressant Paroxetine (항우울제인 Paroxetine의 피부 투과 특성 연구)

  • Jung, Duck-Chae;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • Transdermal drug delivery(TDS) offers many important advantages. For instance, it is easy and painless, it protects the active compound from gastric enzymes, and it avoids the hepatic first-pass effect. Also, it is simple to terminate the therapy if any adverse or undesired effect occurs. But skin is a natural barrier, and only a few drugs can penetrate the skin easily and in sufficient quantities to be effective. Therefore, in recent years, numerous studies have been conducted in the area of penetration enhancement. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other method of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharide, such as xanthan gum and algin were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers and drug contents. Among these polysaccharide, the permeation rate of Paroxetine such as lipophilic drug was the fastest in xanthan gum matrix in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate.

Effect of Vibratory Injection on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.37-47
    • /
    • 2010
  • To improve the grout penetration characteristics, a vibratory grout injection technique was adopted in this study. It is a technique of grout injection in which an oscillating pressure is added to the steady-state pressure as an injection pressure. By applying the vibration during grout injection, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on the change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibratory grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at grouting pressure less than 400 kPa.