• Title/Summary/Keyword: pendant structure

Search Result 30, Processing Time 0.019 seconds

Characteristics and Ring-Opening Isomerization Polymerization of 2-(1,3,3-Trimethyl-6-azabicyclo[3,2,1]-oct-6-yl)-4,5-dihydro-1,3-oxazoline (TAO) (2-(1,3,3-Trimethyl-6-azabicyclo[3,2,1]-oct-6-yl)-4,5-dihydro-1,3-oxazoline(TAO)의 개환이성화중합과 특성평가)

  • Lee, Chan-Woo;Chung, Jin-Do
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.262-267
    • /
    • 2012
  • 2-(1,3,3-Trimethyl-6-azabicyclo [3,2,1]-oct-6-yl)-4,5-dihydro-1,3-oxazoline (TAO) was polymerized at several conditions to clarify the influence of initiators, alkyl halide ($PhCH_2Br$, $PhCH_2Cl$, MeI) and sulfonate (MeOTf). The reactions were conducted at $100^{\circ}C$ for 24 h. The resultant polymer forms several kinds of structures with different combination of initiators. The sole MeOTf initiator caused chain transfer reaction to form the one-order structure for which the resultant polymer exclusively formed pendant structure, while alkyl halide and MeOTf formed two kinds of structures, pendant and main chain, which is caused by partly-proceeded double isomerization polymerization by highly reactive nucleophilic counter anion of halogen. Merrifield polymer was also utilized as an intiator and copolymerized with TAO, which produced a graft structure.

Synthesis and Characterization of New Polyaza Macrocyclic Nickel(Ⅱ) and Copper(Ⅱ) Complexes Two Nitrile or Imidate Ester Pendant Arms: Metal-Mediated Hydrolysis and Alcoholysis of the Nitrile Groups

  • Kang, Shin-Geol;Song, Jeong-Hoon;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.824-829
    • /
    • 2002
  • New di-N-cyanomethylated tetraaza macrocycle 2.13-bis(cyanomethyl)-5.16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^7.12$]docosane $(L^2)$ has been prepared by the reaction of 3, 14-dimethyl-2,6,13,17-tetraazatricyclo $(L^1)$ with bromoacetonitrile. The square-planar complexes $[ML^2](ClO_4)_2(M=Ni(II)$ or Cu(II) can be prepared by the reaction of $L^2$ with the corresponding metal ion in acetonitrile. The cyanomethyl groups of $[ML^2](ClO_4)_2readily$ react with water to $yield[ML^3](ClO_4)_2$ containing pendant amide groups. The trans-octahedral complexes $[ML^4](ClO_4)_2$, in which two imidate ester groups are coordinated to the metal ion, can be also prepared by the reaction of $[ML^2](ClO_4)_2with$ methanol under mild conditions. The hydrolysis and alcoholysis reactions of $[ML^2](ClO_4)_2are$ promoted by the central metal ion, in spite of the fact that the cyanomethyl group is not involved in intramolecular coordination. The reactions are also promoted by a base such as triethylamine but are retarded by an $acid(HClO_4).Interestingly$, the imidate ester groups of $[ML^4]^2$ are unusually resistant to hydrolysis even in 0.1 M $HCIO_4$ or 0.1 M NaOH aqueous solution. Crystal structure of $[NiL^4](ClO_4)_2shows$ that the Ni-N (pendant imidate ester group) bond is rlatively strong; the Ni-N bond distance is shorter then the Ni-N(tertiary) distance and is similar to the Ni-N (secondary) distance.

Syntheses of Biologically Active Phosphinate Derivatives with a Pendant Monoazacrown Ether (모노아자크라운에테르 기능기를 가진 생리활성 포스피네이트 유도체의 합성)

  • Nam Chong-Woo;Chung Yeong-Jin;Yang Il-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.154-161
    • /
    • 1993
  • Four kinds of new phosphinate derivatives with a pendant monoazacrown ether were synthesized and their biological activities were tested. These biologically active phosphinates were synthesized in relatively good yields (61∼72%) by one step reactions of phenylphosphinate with aldehyde and monoazacrown ether. Toxicity of these compounds was tested by intraperitoneal injection of the compounds to male mouse and revealed $LD_{50}$ value of 65∼90 mg/kg, which showed enhanced toxicity by attachment of a pendant azacrown ether to a simple phenylphosphinate structure. Although the ring size effect of the pendant crown ethers, (monoaza-15-crown-5 and monoazo-18-crown-6), beening negligible, the identity of the ester functional group in the phosphinate structure exerted sizable influence on toxicity. Thus, phosphinate derivative with octyl or propyl ester group showed somewhat higher toxicity than that with ethyl ester group.

  • PDF

Synthesis and Characterization of New Polyaza Non-macrocyclic and Macrocyclic Nickel(II) Complexes Containing One 1,3-Diazacyclohexane Ring

  • Lee, Yun-Taek;Jang, Bo Woo;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2125-2130
    • /
    • 2013
  • A new nickel(II) complex $[NiL^1]^{2+}$ ($L^1$ = 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl-1,3-diazacyclohexane) containing one 1,3-diazacyclohexane ring has been prepared selectively by the metal-template condensation of formaldehyde with N-(2-aminoethyl)-1,3-propanediamine and ethylenediamine at room temperature. The complex reacts with nitroethane and formaldehyde to yield the pentaaza macrocyclic complex $[NiL^2]^{2+}$ ($L^2$ = 8-methyl-8-nitro-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one C-$NO_2$ pendant arm. The reduction of $[NiL^2]^{2+}$ by using Zn/HCl produces $[NiL^3(H_2O)]^{2+}$ ($L^3$ = 8-amino-8-methyl-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one coordinated C-$NH_2$ pendant arm that is readily protonated in acid solutions. The hexaaza macrocyclic complex $[NiL^4]^{2+}$ ($L^4$ = 8-phenylmethyl-8-nitro-1,3,6,8,10,13-hexaazabicyclo[13.3.1]heptadecane) bearing one N-$CH_2C_6H_5$ pendant arm has also been prepared by the reaction of $[NiL^1]^{2+}$ with benzylamine and formaldehyde. The nickel(II) complexes of $L^1$, $L^2$, and $L^4$ have square-planar coordination geometry in the solid states and in nitromethane. However, they exist as equilibrium mixtures of the square-planar $[NiL]^{2+}$ (L = $L^1$, $L^2$, or $L^4$) and octahedral $[NiL(S)_2]^{2+}$ species in various coordinating solvents (S); the proportion of the octahedral species $[NiL(S)_2]^{2+}$ is strongly influenced by the ligand structure and the nature of the solvent. Synthesis, spectra, and chemical properties of the nickel(II) complexes of $L^1-L^4$ are described.

Structure Optimization of Di-ionizable Calixarene Nano-baskets for Competitive Solvent Extraction of Alkali and Alkaline Earth Metals

  • Mokhtari, Bahram;Pourabdollah, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3855-3860
    • /
    • 2011
  • The competitive solvent extractions of alkali and alkaline earth metals by di-ionizable calix[4]arene nano-baskets were studied using nine conformers of calix[4]arene nano-baskets. The objective of this work is to assess the variation of macrocycle conformation, orientation and position of pendant moieties upon the extraction parameters (efficiency, selectivity and $pH_{1/2}$) of the complexes. The results revealed that alternation of ring conformation in calixarene scaffold affects the solvent extraction parameters towards alkali and alkaline earth metals, while changing the orientation of pendant moieties from ortho- to para- as well as cis- to trans-analogues depicted no changes in those extraction parameters.

Synthesis and Characterization of New Tetraaza Macrocycles Bearing Two or Four N-Methoxyethyl Pendant Arms and Their Copper(II) and/or Nickel(II) Complexes

  • Kang, Shin-Geol;Kim, Hyun-Ja;Kwak, Chee-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2701-2704
    • /
    • 2010
  • This work shows that both L2 and L3 bearing two and four N-$(CH_2)_2OCH_3$ groups, respectively, can be prepared selectively by the reaction of $L^1$ with 1-bromo-2-methoxyethane. The di-N-substituted macrocycle $L^2$ readily forms its copper(II) and nickel(II) complexes. The N-$(CH_2)_2OCH_3$ groups in $[CuL^2]^{2+}$ are coordinated to the metal ion, whereas those in $[NiL^2]^{2+}$ are not involved in coordination. Interestingly, $L^3$ reacts with $Cu^{2+}$ ion to form $[Cu(HL^3)]^{3+}$, in which one tertiary amino group is not involved in coordination.