• Title/Summary/Keyword: pelvic parameter

Search Result 22, Processing Time 0.018 seconds

Utrecht Interstitial Applicator Shifts and DVH Parameter Changes in 3D CT-based HDR Brachytherapy of Cervical Cancer

  • Shi, Dan;He, Ming-Yuan;Zhao, Zhi-Peng;Wu, Ning;Zhao, Hong-Fu;Xu, Zhi-Jian;Cheng, Guang-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3945-3949
    • /
    • 2015
  • Background: For brachytherapy of cervical cancer, applicator shifts can not be avoided. The present investigation concerned Utrecht interstitial applicator shifts and their effects on organ movement and DVH parameters during 3D CT-based HDR brachytherapy of cervical cancer. Materials and Methods: After the applicator being implanted, CT imaging was achieved for oncologist contouring CTVhr, CTVir, and OAR, including bladder, rectum, sigmoid colon and small intestines. After the treatment, CT imaging was repeated to determine applicator shifts and OARs movements. Two CT images were matched by pelvic structures. In both imaging results, we defined the tandem by the tip and the base as the marker point, and evaluated applicator shift, including X, Y and Z. Based on the repeated CT imaging, oncologist contoured the target volume and OARs again. We combined the treatment plan with the repeated CT imaging and evaluated the change range for the doses of CTVhr D90, D2cc of OARs. Results: The average applicator shift was -0.16 mm to 0.10 mm for X, 1.49 mm to 2.14 mm for Y, and 1.9 mm to 2.3 mm for Z. The change of average physical doses and EQD2 values in Gy${\alpha}/{\beta}$ range for CTVhr D90 decreased by 2.55 % and 3.5 %, bladder D2cc decreased by 5.94 % and 8.77 %, rectum D2cc decreased by 2.94 % and 4 %, sigmoid colon D2cc decreased by 3.38 % and 3.72 %, and small intestines D2cc increased by 3.72 % and 10.94 %. Conclusions: Applicator shifts and DVH parameter changes induced the total dose inaccurately and could not be ignored. The doses of target volume and OARs varied inevitably.

Development of Computer Vision System for Individual Recognition and Feature Information of Cow (II) - Analysis of body parameters using stereo image - (젖소의 개체인식 및 형상 정보화를 위한 컴퓨터 시각 시스템 개발(II) - 스테레오 영상을 이용한 체위 분석 -)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-76
    • /
    • 2003
  • The analysis of cow body parameters is important to provide some useful information fur cow management and cow evaluation. Present methods give many stresses to cows because they are invasive and constrain cow postures during measurement of body parameters. This study was conducted to develop the stereo vision system fur non-invasive analysis of cow body features. Body feature parameters of 16 heads at two farms(A, B) were measured using scales and nineteen stereo images of them with walking postures were captured under outdoor illumination. In this study, the camera calibration and inverse perspective transformation technique was established fer the stereo vision system. Two calibration results were presented for farm A and fm B, respectively because setup distances from camera to cow were 510 cm at farm A and 630cm at farm B. Calibration error values fer the stereo vision system were within 2 cm for farm A and less than 4.9 cm for farm B. Eleven feature points of cow body were extracted on stereo images interactively and five assistant points were determined by computer program. 3D world coordinates for these 15 points were calculated by computer program and also used for calculation of cow body parameters such as withers height. pelvic arch height. body length. slope body length. chest depth and chest width. Measured errors for body parameters were less than 10% for most cows. For a few cow. measured errors for slope body length and chest width were more than 10% due to searching errors fer their feature points at inside-body positions. Equation for chest girth estimated by chest depth and chest width was presented. Maximum of estimated error fur chest girth was within 10% of real values and mean value of estimated error was 8.2cm. The analysis of cow body parameters using stereo vision system were successful although body shape on the binocular stereo image was distorted due to cow movements.