• Title/Summary/Keyword: pedometer

Search Result 32, Processing Time 0.015 seconds

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Impact of the Physical Characteristics of Smart Wristbands and Smartwatches on Perceived Functional, Aesthetic, And Symbolic Values (스마트팔찌와 스마트워치의 물리적 특성이 지각된 기능적, 심미적, 상징적 가치에 미치는 영향)

  • Soo In Shim;Heejeong Yu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.525-532
    • /
    • 2024
  • This study explores the impact of physical characteristics (e.g., shape, color, material, size, weight, technical features) of smart wristbands and smartwatches on consumers' perceived functional, aesthetic, and symbolic values using an extended technology acceptance model. An online survey was conducted with adult residents of the United States who had experience using smart wristbands or smartwatches. Participants were asked about various physical characteristics of products they had used in the past year or were currently using, and their evaluations of these characteristics. The results revealed that the shape of the front display shape significantly influenced symbolic value, with circle shape and square shpae showing significantly higher symbolic value than rectangle shape. Wristband materials also had a significant impact on symbolic value, with metal and leather showing higher symbolic value among various materials. Additionally, an increase in product size was associated with higher symbolic value. Moreover, certain technical features such as activity tracker, alarm clock, and distance tracking influenced perceived functional value, while functions like time display, GPS, and email influenced perceived aesthetic value. Pedometer, GPS, and email were found to enhance perceived symbolic value. These findings provide valuable insights into consumer preferences for smart wristbands and smartwatches, serving as valuable information for product improvement and new product development.