• Title/Summary/Keyword: pectoral muscle

Search Result 48, Processing Time 0.043 seconds

The Effects of Caponization Age on Muscle Characteristics in Male Chicken

  • Chen, Kuo-Lung;Chen, Tsai-Tzu;Lin, Kou-Joong;Chiou, Peter Wen-Shyg
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1684-1688
    • /
    • 2007
  • This study examined the caponization effects on the muscle characteristics (quality and quantity) of caponized male chickens fed before or after sexual maturity. Healthy and uniform Single Comb White Leghorn chickens were caponized at 3-week-old. Feeding was conducted until 16-week-old in trial 1 or from 12-week-old to 26-week-old in trial 2. Ten sham operated male chickens (Sham) were also assigned to each trial as the control group. Chickens used in both trials were housed in individual cages with each chicken representing one replicate. The results showed that early caponization (3-week-old) significantly increased (p<0.05) body weight and pectoral major muscle weight and percentage at 16-week-old compared to the Sham in trial 1. Caponization significantly increased (p<0.05) the protein content of the pectoral major muscle, but decreased (p<0.05) the ash content. Late caponization (12-week-old) significantly decreased (p<0.05) the ash content, myofibrillar ATPase activity and emulsification capacity of the pectoral major muscle in mature capons (26-week-old) compared to the Sham in trial 2. Early caponization (3-week-old) only increased the weight and protein content of the pectoral major muscle with decreased ash content in 16-week-old capons. Late caponization (12-week-old) showed no affects on pectoral major muscle quantity, while it decreased the ATPase activity and enhanced the emulsification capacity in mature (26-week-old) capons. Hence, the muscle quality improvement was shown as capons were fed to sexual maturity.

Studies on the Myofibrillar Proteins from Chicken Muscle -2. Comparison of ATPase Activity in Myofibril, Actomyosin and Myosin Extracted from Leg and Pectoral Skeletal Muscle (닭고기의 근원섬유 단백질에 관한 연구 -2. 골격근 부위별로 추출한 근원섬유, 액토미오신 및 미오신의 ATPase 활성 비교-)

  • Park, Chang-Sik;Gong, Yang-Sug;Moon, Yoon-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.1
    • /
    • pp.82-87
    • /
    • 1985
  • Some biological activities showed as ATPase activity of myofibril, actomyosin and myosin extracted from chicken leg and pectoral skeletal muscle were investigated. The $Mg^{+2}$-ATPase activity at 0.05 M KCl were 0.82, 0.38 and 0.11 ${\mu}mole$ Pi/mg protein/min. in actomyosin, myofibril and myosin from pectoral muscle while 0.71, 0.32 and 0.08 ${\mu}mole$ Pi/mg protein/min. in actomyosin, myofibril and myosin from leg muscle. EDTA-ATPase activity at 0.6M KCl were 0.80, 0.42 and 0.40 ${\mu}mole$ Pi/mg protein/min. in actomyosin, myofibril and myosin from pectoral muscle. In case of leg muscle, that activity was noted as 0.69, 0.33 and 0.28 ${\mu}mole$e Pi/mg protein/min in proteins. ATPase activity of myosin from leg and pectoral muscle were inhibited in 10% at a higher concentration of $Mg^{+2}$ than molar concentration of EDTA, and the ATPase activity was increased to 400% compared with control at $10^{-3}M$ of $Ca^{+2}$. Actomyosin from pectoral muscle was solubilized at 0.1 M KCl above and that from leg muscle was solubilized at 0.15 M KCl above. In case of myosin, pectoral muscle was solubilized at 0.25M KCI above and leg muscle was solubilized at 0.30M KCl above.

  • PDF

Polymorphic Diversity of UBX Domain D from cDNA Isolated from Pectoral Muscle of Korean Native Chicken

  • Sun, Sang-Soo;Kamyab, Abdolreza;Firman, Jeff
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The objectives of this study are to identify specific functional genes which are related with growth and protein structure of the pectoral muscle of Korean native chicken. Pectoral muscle was isolated from three Korean native chickens (KNC, red brown, 12 months old, 2.41 ${\pm}$ 0.24 kg) and three Cornish chickens (16 month old, 2.76 ${\pm}$ 3.0 kg). The subtraction cDNA library was prepared in PCR4 Blunt-TOPO vector. The DNA sequence homology was compared with other breeds and species in GenBank. A clone NDS-81 was found to be unique for the DNA sequence homology with UBX family. Their partial sequence has high homology (98%) with chicken UBX domain D. Chicken UBX domain has chicken (93%), cattle (68%), dog (67%), mouse (64%) and, human (63%) nucleotide sequence homology. Several regions were mutated from T in chicken to C or G in the NDS-81 clone. The first site is LAD in chicken, but it was expressed as (L)RM in clone NDS-81. In this site, amino acids were changed from Ala to Arg, and from Asp to Met. The second site was changed from ER (Arg) in chicken to ED (Asp) in clone NDS-81. They are both containing functional side chains and play an important role in binding other proteins. Therefore, the clone NDS-81 could be a different candidate gene for the UBX family gene and could related with pectoral muscle structure of Korean native chicken.

Variation of Fat and Protein Reserves in Wintering Dunlin, Calidris alpina (월동기 민물도요 Calidris alpina 의 지방과 단백질의 변화)

  • 권기정;황규황
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.23-27
    • /
    • 1992
  • The changes of pectoral muscle size (as an index of protein reserves) and fat reserves (as an index of lipid) were measured in wintering Dunlin during 1988 -1989 on two estuaries located in the south coast of Korea. The mean of lean mass of February population was greater(11.8%) than that of October population. SMI of October population was greater(4.5%) than that of February population and lipid index of October population also greater(1.6%) than that of February population. This show that the body condition of October population is better than February population. The mean of fat and protein reserves of 22 % of Dunlin arriving on October for their wintering were higher than that of others, this group seems to continue their migration to south further and 11% of the wintering population seems to starve during winter.

  • PDF

A Comparison of the Serratus Anterior Muscle Activity according to the Shoulder Flexion Angles in a Closed Kinetic Chain Exercise and an Open Kinetic Chain Exercise (열린사슬운동 및 닫힌사슬운동에서 위팔굽힘 각도에 따른 앞톱니근의 근활성도 비교)

  • Moon, Sung-Jong;Kim, Tack-Hoon;Roh, Jung-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.369-378
    • /
    • 2013
  • PURPOSE: The purpose of present study was to ascertain how the activity of the serratus anterior muscle, the upper trapezius muscle and the pectoral major muscle was affected while the upper arm was being flexed at 70, 90 and 110 degrees respectively in a closed kinetic chain exercise (wall push up plus) and an open kinetic chain exercise (static hug). METHODS: Sixteen healthy young men subjects participated in the study. Surface electromyography (EMG) data were collected from the dominant-side muscles during a closed kinetic chain exercise and an open kinetic chain exercise. The activity of each muscle was measured quantitatively, and by the use of the two-way repeated ANOVA, the data were compared with each other according to exercises and shoulder flexion angles. RESULTS: Results indicated that the closed kinetic chain exercise did not interact with the open kinetic chain exercise (p>.05). In both the closed kinetic chain exercise and the open kinetic chain exercise, the activity of the serratus anterior muscle became different significantly according to angles (p<.05). Its activity increased in order of 70, 90 and 110 degrees (p<.05). In both exercises and all angles, muscle activity was significantly higher in the serratus anterior muscle than in the upper trapezius muscle and the pectoral major muscle (p<.05). CONCLUSION: The above results show that there is a need to selectively control the exercise stress of the serratus anterior muscle in the case of the patients with the shoulder impingement syndrome characterized by the winged scapula, insufficient scapular protraction and upward rotation.

Degenerative myopathy of the supracoracoideus (DMS) in turkeys and broiler chickens, Review (칠면조와 육계에서 청색증 발생기전에 관한 고찰)

  • Song, Hee-Jong;Lee, Myung-Woo;Ryu, Kyeong-Sun;Jang, Hyung-Kwan
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.1
    • /
    • pp.161-166
    • /
    • 2008
  • Deep pectoral myopathy (DPM), also known as Oregon muscle disease or green muscle disease, was first described in 1968 by Dickinson et al as "degenerative myopathy" in turkeys. Even though this condition was first recognized in adult meat-type turkey and chicken breeders, it is becoming more and more common in meat-type growing birds. DPM occurs exclusively in birds that have been specially selected for breast muscle development. It is generally recognized that DPM is an ischemic necrosis that develops in the deep pectoral muscle (supracoracoideus or pectoralis minor muscle) mainly because this muscle is surrounded by inelastic fascia and the sternum, which do not allow the muscle mass to swell in response to the physiological changes occurring when muscle are exercised, as in wing flapping. The lesion does not impair the general health of birds and is generally found during cut-up and deboning, moreover, it can be both unilateral or bilateral, affecting just one or both pectoralis minor muscle, respectively. No public health significance is associated to DPM, but it is aesthetically undesirable. The fillet should be removed, whereas the rest of the carcass is still fit for human consumption. However, the required trimming operations determine the downgrading of the products and produce an economic loss for the industry, especially because it affects the more valuable part of the carcass. The incidence of DPM increases with market weight in broilers, with more cases reported in higher-yielding strains and in males. Increased bird activity (flock nervousness, flightiness, struggle, and wing flapping) induced by factors such as feed or water outages, lighting programs and intensity, human activity, and excessive noises in and around chicken houses should be looked at as a trigger for the development of DPM in broiler. However, most of the studies conducted to evaluate the incidence of DPM in poultry are concerned with parental commercial breeding stocks under experimental conditions (Bianchi et al. 2006. Poult Sci 85 : 1843-1846). There is a possible genetic relationship between the selection for large-breasted birds and this condition. Management procedures that discourage excessive wing flapping would reduce the incidence (Jordan and Pattison. 1998. Poultry diseases. 398-399).

Thermogenesis and Motor Recruitment of the Pectoral Muscle During Shivering in Arousing Bats Murina Leucogaster

  • Choi, In-Ho;Lee, Youn Sun;Oh, Yung Keun;Jung, Noh-Pal;Gwag, Byoung Joo;Shin, Hyung-Cheul
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • Temperate-resident bats exhibit a circadian cycle of torpor and arousal In summer. The physiological role and selective advantage of torpor as an energy saving mechanism have been received much attention by hibernation biologists. However, despite the significance of the recovering euthermic function, the arousal process and mechanism in these animals have been poorly addressed. In this study, we investigated thermogenic and motor activities of a local bat species Murina leucogaster during arousal by simultaneously examining oxygen consumption rate, body temperature ($T_b$) and pectoral electromyography (EMG). We found that Tb of the torpid bats (12-14$^{\circ}C$) was augmented slowly by nonshivering mechanism during the initial awakening phase. The pectoral shivering, gauged by EMG activity, occurred between 17$^{\circ}C$ and 38$^{\circ}C$. Over this Tb range of shivering, heat was produced at a rate of 0.145 kcal $kg^{-1}\;min^{-1}$ to raise 1$^{\circ}C$ $T_b$ per min. Shivering was most intensive at 30-35$^{\circ}C$ where both EMG amplitude and spike frequency were the highest. Activation of the pectoral myofibers seemed to be controlled in a manner that motor units were recruited from smaller to larger sizes, with greater synchronization, as muscle shivering became intensive with increasing $T_b$.

  • PDF