• Title/Summary/Keyword: pearlite texture

Search Result 3, Processing Time 0.018 seconds

Change in Microstructure and Texture during Continuous-Annealing in Dual-Phase Steels (복합조직강의 연속어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2015
  • The variation in microstructure and texture during continuous annealing was examined in a series of 1.6% Mn-0.1% Cr-0.3% Mo-0.005% B steels with carbon contents in the range of 0.010 to 0.030%. It was found that microstructure of hot band consisted of ferrite and pearlite as a consequence of high coiling temperature, and eutectoid carbon content was between 0.011% and 0.016%. Martensite ranged in volume fraction from 1.5% to 4.0% when annealed at $820{\circ}C$ according to the typical continuous annealing cycle. The critical martensite content for the continuous yielding was about 4% from stress-strain curves. The continuous yielding was obtained in the 0.030% carbon steel and 0.010% to 0.020% carbon steels revealed some yield point elongation ranging from 0.8% to 2.2% in as-annealed conditions. Higher tensile strength in the higher carbon steel is due to both increase in the martensite volume fraction and ferrite grain refinement. Decreasing the carbon content to 0.01% strengthened the intensities of ${\gamma}$-fiber textures, resulting in the increase in the $r_m$ value, which was caused by the lower volume fraction of martensite. The higher carbon steels showed the lower $r_m$ value of about 1.0.

Metallic Mineralogical Characteristics of Forged Iron Axe from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘 출토 단조 철부의 금속광물학적 특성)

  • Kim, Jeong-Hun;Yi, Ki-Wook;Lee, Chan-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.231-245
    • /
    • 2007
  • The forged iron axe of the middle 3rd Century found in the No. 2 wood-framed tomb from the Hwangseongdong site, Gyeongju is rectangular on the plane level. The iron axe shines in met-allic luster, which is light grey with pale creamy tint. The result of X-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and texture of the original ore has been kept intact. There are fine-grained quartz, calcite, mica, magnetite, amphibole, unknown tungsten minerals, pyroxene and olivine inside the axe. Those must be the impurities that they failed to remove in the thermal treatment process. Generally, the iron axe consists mainly of pearlite texture coexisting ferrite and cementite, and show high carbon contents with homogeneous distribution. It can be interpreted the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. Crude ores of the iron axe are possible utilized by magnetite from the Ulsan mine on the basis of the occurrences and inclusions. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

Metallurgical Analysis of Forged Iron Axe Excavated from the Wood-framed Tomb at the Hwangseongdong, Gyeongju, Korea (경주 황성동 목곽묘에서 출토된 단조 철부의 금속학적 특성 분석)

  • Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Jeong-Hun;Yi, Ki-Wook
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-42
    • /
    • 2004
  • The forged iron axe found in the No. 2 wood-framed tomb (the middle 3rd century) of Hwangseongdong, Gyeongju is rectangular on the plane level. It shows an obtuse angle in the edge part, while the joint part has the both sides folded up and shows the traces of wood. Under the reflected light, the Iron axe shines in metal luster, which is bright light gray or light creamy colors. The result of x-ray diffraction analysis shows that the axe consists of magnetite and geothite, which can explain why the composition and structure of the original ore has been kept intact. The microtexture of the axe has the irregular network of ferrite and pearlite, and tile cementite of tiny amount in the ferrite background. The overall treatment of the texture seems to be thermal with a high ratio of carbon. There are fine-grained magnetite, wolframite, quartz, calcite, mica, hornblende and pyroxene inside the axe. Those must be the impurities that they failed to remove in the refining process. The normal ferrite is composed of pure iron whose $Fe_2O_3$ proportion is from 99.16 to $99.84\;wt.\%$. Other than them, the ferrite parts usually contain $Al_2O_3\;and\;SiO_2$. The irregular network of pearlite also contains Impurities including $Al_2O_3\;and\;SiO_2$ and shows highly diverse patterns of carbon content. It's because the axe was carburized after the material was made to resemble pure iron. The decarbonization work didn't go well along the process marks. It's estimated that the original ore was bloom produced in low-temperature reduction and formed around in $727^{\circ}C$, which is eutetic temperature.

  • PDF