• Title/Summary/Keyword: peak strength

Search Result 1,168, Processing Time 0.028 seconds

The Effect of a Taping on Muscle Strength, and Proprioception in Ankle (테이핑에 따른 발목 근력, 고유수용성감각에 미치는 영향)

  • Lee, Sang-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.4
    • /
    • pp.225-233
    • /
    • 2008
  • Purpose : The purpose of this study was to investigate changes of muscle strength, ROM and proprioceptive function as before & after ankle taping in soccer players. For this study fifteen sports club whose had no ankle injuries were volunteered. Methode : Fifteen healthy male in soccer players participated in this study. Biodex pro system3 was used to measure isokinetic muscle strengths at $60^{\circ}$/sec angular velocity. Performances of ankle joint were measured peak torque, total work, average power, total work. To measure proprioceptive function used goniometer. Results : 1. proprioceptive sensation error were significantly differences by before & after taping(p<.05). 2. Compare of total work of dorsi flexion plantar flexion weren't significantly differences by before & after taping(p>.05). 3. Compare of average power of dorsi flexion weren't significantly differences by before & after taping(p>.05). 4. Compare average power of plantar flexion were significantly differences by before & after taping(p<.05). 5. Compare average peak torque of dorsi flexion weren't significantly differences by before & after taping(p>.05). 6. Compare average peak torque of plantar flexion were significantly differences by before & after taping(p<.05). Conclusion : Taping can have propriocetive aberrative angular measure, power & peak torque of plantar flexion were significantly differences. But, total work of dorsi flexion plantar flexion and power & peak torque of dorsi flexion weren't significantly differences.

  • PDF

Bonding between high strength rebar and reactive powder concrete

  • Deng, Zong-Cai;Jumbe, R. Daud;Yuan, Chang-Xing
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • A central pullout test was conducted to investigate the bonding properties between high strength rebar and reactive powder concrete (RPC), which covered ultimate pullout load, ultimate bonding stress, free end initial slip, free end slip at peak load, and load-slip curve characteristics. The effects of varying rebar buried length, thickness of protective layer and diameter of rebars on the bonding properties were studied, and how to determine the minimum thickness of protective layer and critical anchorage length was suggested according the test results. The results prove that: 1) Ultimate pull out load and free end initial slip load increases with increase in buried length, while ultimate bonding stress and slip corresponding to the peak load reduces. When buried length is increased from 3d to 4d(d is the diameter of rebar), after peak load, the load-slip curve descending segment declines faster, but later the load rises again exceeding the first peak load. When buried length reaches 5d, rebar pull fracture occurs. 2) As thickness of protective layer increases, the ultimate pull out load, ultimate bond stress, free end initial slip load and the slip corresponding to the peak load increase, and the descending section of the curve becomes gentle. The recommended minimum thickness of protective layer for plate type members should be the greater value between d and 10 mm, and for beams or columns the greater value between d and 15 mm. 3) Increasing the diameter of HRB500 rebars leads to a gentle slope in the descending segment of the pullout curve. 4) The bonding properties between high strength steel HRB500 and RPC is very good. The suggested buried length for test determining bonding strength between high strength rebars and RPC is 4d and a formula to calculate the critical anchorage length is established. The relationships between ultimate bonding stress and thickness of protective layer or the buried length was obtained.

Tight sportswear and physiological function - Effect on muscle strength and EMG activity -

  • Dai, Xiao-Qun;Li, Yu-Ping;Cai, Juan-Juan;Lu, A-Ming;Wang, Guo-Dong
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.4
    • /
    • pp.606-611
    • /
    • 2013
  • It has been reported that tight sportswear could have complicated influence on physiological function of human body. The purpose of this present study was to investigate the effect of wearing gradient compression tights (GCT) on muscle strength and EMG activity during repeated isokinetic muscle contractions. Four healthy male undergraduate students performed maximal voluntary isokinetic concentric muscle contractions on biomechanical test and training systems with GCT and loose pants as control (Cont) respectively. During each test, the peak torque of extensor and flexor contractions and the surface electromyography (sEMG) of the rectus femoris and medial gastrocnemius was recorded simultaneously, the peak torque was recorded as an indicator of muscle strength, and the average amplitude and mean power frequency of sEMG were calculated as indicators of EMG activity. The results showed that: the peak torque decreased gradually during continuous muscle contractions both when the Cont and GCT were worn, average sEMG and mean power frequency declined along with the repetitions of muscle contractions for both wearing conditions, and the change tendency was consistence with that of peak torque. There was no obvious difference between the peak torque recorded wearing the Cont or wearing GCT, but when GCT were worn, average sEMG was lower and mean power frequency was higher than the Cont condition. In 24 samples obtained from four subjects, 80% of results showed the same trend. So we could make a conclusion that wearing GCT had no obvious effect on the improvement of muscle strength, but it would affect the EMG activity positivly.

Compressive Strength Tests on Frozen Siberian Clay (시베리아 동토지역 점성토의 압축강도 시험)

  • Kim, Young-Chin;Martin, Christ
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • The objective of this study was to investigate the strength characteristics of frozen clay. Compressive strength tests were performed on frozen clay with different water contents at various temperatures. The dry density of specimens and strain rate was kept constant. Test results showed that compressive strength increased with increasing water content and decreasing temperature. The increase in peak strength became more significant the lower the temperature for a given water content. The failure mode changed from brittle to ductile deformation with increasing water content and decreasing temperature. Tests also showed an increase in deformation modulus with increasing peak strength, increasing water content and decreasing temperature.

  • PDF

Isokinetic Evaluation of the Trunk Flexors and Extensors for the White Collar Workers in Adult Males (사무직근로자의 요추부 굴곡근 및 신전근의 등속성 근력평가 서울시 일부지역의 21세 $\sim$ 49세 남자직장인을 중심으로)

  • Oh, Seung-Kil;Choi, Byung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.1
    • /
    • pp.377-396
    • /
    • 2000
  • After warming-up exercise for 20 minutes, Isokinetic measurement of trunk strength for flexor and extensor was done by using Cybex 6000 TEF Unit on 91 healthy male white workers from 22years old to 49 years old, and compared each other. 20 repetitions of trunk extension-flexion were done at $120^{\circ}$/sec angular velocity. After resting for 1 minutes, Four repetitions at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec) were done with 30 seconds of resting interval between each angular velocity. The purpose of this study is to obtain the isokinetic normative strength values for trunk extensors and flexors, and is to know the correlation between age, height, weight of subjects and data from isokinetic trunk strength measurement, and is to provide a guideline for exercise program of male white collar workers The collected data were analyzed by ANOVA, Duncan's Multiple Range Test, and Pearson correlation coefficiency in PC-SAS program. The results obtained were as follow; 1. There is significant positive-correlation with the statistic value between weight and peak torque of trunk muscles at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec)(p<01), between height and peak torque of trunk muscles at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec) except peak torque of trunk flexor at $60^{\circ}$/sec(p<01). 2. There is nagitive-correlation between age and peak torque of trunk muscles at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec), there is significant differences with statistic value between age and peak torque of trunk extensor at $120^{\circ}$/sec(p<.01). 3. Mean peak torque and mean peak torque % by body weight of trunk extensor is 1.1 times higher values than trunk flexor at $60^{\circ}$/sec. 4. There is the increase in peak torque angle of trunk flexor with increasing of age, and the decrease in peak torque angle of trunk flexor with increasing of age at two different angular velocities($60^{\circ}$/sec, $120^{\circ}$/sec). there is significant differences with statistic value in peak torque angle of trunk flexor at $120^{\circ}$/sec(p<.01). 5. There is significant decrease in endurance ratio of trunk extensor with increasing of age at $120^{\circ}$/sec(p<.01). In conclusion, peak torque of trunk extensor is 1.1 times higher values than trunk flexor in healthy male white collar workers.

  • PDF

Effect of Varying Water Content on the Mohr-Coulomb Shear Strength Parameters for Soils (지반의 함수비 조건에 따른 Mohr-Coulomb 강도 정수의 변화)

  • Kim, Bumjoo;Kim, Khiwoong;Lee, Seungho;Hwang, Youngcheol;Park, Dongsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.47-54
    • /
    • 2008
  • In this study, the effect of water content condition was investigated on the Mohr-Coulomb shear strength parameters which are commonly used as the input data in the soil slope analysis. For the purpose, a series of direct shear test was conducted in different water content conditions on the two types of weathered soils and a dam core material, obtained from the domestic slope construction sites and the dam construction site, respectively. The comparisons between the values of the Mohr-Coulomb ${\phi}_{peak}$ and $c_{peak}$, estimated from the relationships between the normal stress and the peak shear stress for the samples in the four different water content conditions (i.e., dry side, optimum, wet side, and saturated), showed that overall, the values of $c_{peak}$ decreased gradually while those of ${\phi}_{peak}$ did not vary much with increasing the water content. A rough estimate for the varying ratio of the values of ${\phi}_{peak}$ and $c_{peak}$ indicated that the values of $c_{peak}$ decreased by every 25% of the $c_{peak}$ values in dry side, while those of ${\phi}_{peak}$ were constant, as the water content condition changed from dry, optimum, and wet to saturated, respectively.

  • PDF

The Changes of Isokinetic Strength in Accordance with Short-term Weight loss of Wrestlers (레슬링 선수들의 단기간 체중감량이 슬관절의 등속성 운동능력에 미치는 영향)

  • 염종우
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.780-785
    • /
    • 2002
  • The purpose of this study is to investigate isokinetic strength changes of knee joint in accordance with short-term weight loss of wrestlers. For this purpose, 14 male wrestlers of a K technical high school in B city participated in our research. The wrestlers were divided into two groups; one group of the wrestlers didn't lose any weight, and the other lost over 5% of their weights. The isokinetic strength was also observed before and after weight loss. The isokinetic strenght test were processed at test speed of the$60^{\circ}C$/sec, $90^{\circ}C$/sec, and $250^{\circ}C$/sec with the CYBEX NORM system(Cybex 770+TMS, USA). Peak torque, peak torque %BW, total work, total work %BW, and endurance ratio were measured. Results showed that the isokinetic strength after the short-term weight loss of wrestlers decreased meaningfully Although endurance ratio didn't show any meaningful difference in our research, but more accurate research may find out the relationship between short-term weight loss and the endurance ratio of isokinetic strength.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

Comparison of the Isokinetic Strength of the Knee and Ankle and Isometric Strength of the Lumbar Extensor in Female Collegiate Dancers and Controls (무용전공 여대생들과 일반 여대생들의 무릎과 발목 등속성 최대우력과 허리폄근 등척성 최대우력 비교)

  • Won, Jong-Im
    • Physical Therapy Korea
    • /
    • v.16 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • In dancers, intact muscular coordination is a well balanced antagonist, which could be a decisive factor in protection against injury as dancers often have hypermobile joints and their ankle joints often bear their full body weight in extreme positions. The purposes of this study were to identify the isokinetic strength to the knee and ankle and the isometric strength of the trunk in female collegiate dancers and controls. Furthermore, the study aimed to investigate the peak torque ratio of knee extension to flexion, ankle plantarflexion (PF) to dorsiflexion (DF), and dominant legs to nondominant. Twenty-one female collegiate dancers (20.0 years of age) and twenty-one female collegiate students (19.3 years of age) performed isokinetic maximum efforts of the knee extensors and flexors at $60^{\circ}/sec$ and $120^{\circ}/sec$, the ankle plantarflexors and dorsiflexors at $30^{\circ}/sec$ and $120^{\circ}/sec$ and isometric maximum efforts of the lumbar extensors at $0^{\circ}$, $12^{\circ}$, $24^{\circ}$, $36^{\circ}$, $48^{\circ}$, $60^{\circ}$, and $72^{\circ}$. The results were as follows: The isokinetic peak torque of the knee extensors and the ratio of knee extensors to flexors of dancers were significantly higher than those of controls (p<.01). However, the isometric peak torque of the back extensors (p<.01) and isokinetic peak torque of the ankle plantarflexors and dorsiflexors (p<.05) of dancers were significantly lower than those of controls. Further studies are needed to identify the difference in proprioception of the joints between dancers and controls.

  • PDF

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.