• Title/Summary/Keyword: peak seismic response

Search Result 232, Processing Time 0.021 seconds

Peak seismic response of a symmetric base-isolated steel building: near vs. far fault excitations and varying incident angle

  • Pavlidou, Constantina;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.349-365
    • /
    • 2020
  • Since the peak seismic response of a base-isolated building strongly depends on the characteristics of the imposed seismic ground motion, the behavior of a base-isolated building under different seismic ground motions is studied, in order to better assess their effects on its peak seismic response. Specifically, the behavior of a typical steel building is examined as base-isolated with elastomeric bearings, while the effect of near-fault ground motions is studied by imposing 7 pairs of near- and 7 pairs of far-fault seismic records, from the same 7 earthquake events, to the building, under 3 different loading combinations, through three-dimensional (3D) nonlinear dynamic analyses, conducted with SAP2000. The results indicate that near-fault seismic components are more likely to increase the building's peak seismic response than the corresponding far-fault components. Furthermore, the direction of the imposed earthquake excitations is also varied by rotating the imposed pairs of seismic records from 0◦ to 360◦, with respect to the major construction axes. It is observed that the peak seismic responses along the critical incident angles, which in general differ from the major horizontal construction axes of the building, are significantly higher. Moreover, the influence of 5% and 10% accidental mass eccentricities is also studied, revealing that when considering accidental mass eccentricities the peak relative displacements of the base isolated building at the isolation level are substantially increased, while the peak floor accelerations and interstory drifts of its superstructure are only slightly affected.

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Seismic Response Evaluation of Waste Landfills (쓰레기 매립지반의 지진거동 평가)

  • 김기태;이지호;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.767-772
    • /
    • 2002
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential in the seismic design to perform the accurate site-specific ground response analysis. In this paper, one-dimensional seismic characteristics of waste landfill are studied based on the vertical propagation of horizontal shear waves through the column of soil/waste. Seismic response analysis is peformed for short-period, long-period and artificial earthquake ground motions using a computer program for seismic response analysis of horizontally layered soil deposits. The computed peak ground accelerations are compared with the values calculated according to Korean seismic design guidelines. The analysis result shows that the long-period earthquake causes the largest peak ground acceleration while the artificial earthquake results in the smallest one.

  • PDF

Assessment of pushover-based method to a building with bidirectional setback

  • Fujii, Kenji
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.421-443
    • /
    • 2016
  • When conducting seismic assessment of an asymmetric building, it is essential to carry out three-dimensional analysis considering all the possible directions of seismic input. For this purpose, the author proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric buildings with bidirectional setback and designed according to strong-column weak beam concept is carried out considering various directions of seismic input, and the results compared with those estimated by the proposed method. The largest peak displacement estimated by the simplified method agrees well with the envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to analysed building models is made as well based on pushover analysis results.

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

Estimation of amplification of slope via 1-D site response analysis (1차원 지반응답해석을 통한 사면의 증폭특성 규명)

  • Yun, Se-Ung;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

EFFECTS OF MECHANICAL PROPERTY VARIABILITY IN LEAD RUBBER BEARINGS ON THE RESPONSE OF SEISMIC ISOLATION SYSTEM FOR DIFFERENT GROUND MOTIONS

  • Choun, Young-sun;Park, Junhee;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.605-618
    • /
    • 2014
  • The effects of variability of the mechanical properties of lead rubber bearings on the response of a seismic isolation system are investigated. Material variability in manufacturing, aging, and operation temperature is assumed, and two variation models of an isolation system are considered. To evaluate the effect of ground motion characteristics on the response, 27 earthquake record sets with different peak A/V ratios were selected, and three components of ground motions were used for a seismic response analysis. The response in an isolation system and a superstructure increases significantly for ground motions with low A/V ratios. The variation in the mechanical properties of isolators results in a significant influence on the shear strains of the isolators and the acceleration response of the superstructure. The variation provisions in the ASCE-4 are reasonable, but more strict variation limits should be given to isolation systems subjected to ground motions having low A/V ratios. For application of seismic isolation systems to safety-related nuclear structures, the variation in the material and mechanical properties of the isolation system should be properly controlled during the manufacturing and aging processes. In addition, special consideration should be given to minimize the accidental torsion caused by the dissimilarity in the stiffness variations of the isolators.

On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: sharp vs. smooth behaviour

  • Mavronicola, Eftychia;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1223-1240
    • /
    • 2014
  • Seismic isolation has been established as an effective earthquake-resistant design method and the lead rubber bearings (LRBs) are among the most commonly used seismic isolation systems. In the scientific literature, a sharp bilinear model is often used for capturing the hysteretic behaviour of the LRBs in the analysis of seismically isolated structures, although the actual behaviour of the LRBs can be more accurately represented utilizing smoothed plasticity, as captured by the Bouc-Wen model. Discrepancies between these two models are quantified in terms of the computed peak relative displacements at the isolation level, as well as the peak inter-storey deflections and the absolute top-floor accelerations, for the case of base-isolated buildings modelled as multi degree-of-freedom systems. Numerical simulations under pulse-like ground motions have been performed to assess the effect of non-linear parameters of the seismic isolation system and characteristics of both the superstructure and the earthquake excitation, on the accuracy of the computed peak structural responses. Through parametric analyses, this paper assesses potential inaccuracies of the computed peak seismic response when the sharp bilinear model is employed for modelling the LRBs instead of the more accurate and smoother Bouc-Wen model.