• 제목/요약/키워드: peak moment

검색결과 259건 처리시간 0.028초

렌치 작업에서의 청년층의 상지근력 및 근피로도에 관한 연구 (Upper Limbs Related Muscle Strength and Fatigue During the Wrench Job for Korean Young Aged)

  • 윤훈용;김은식
    • 산업경영시스템학회지
    • /
    • 제35권2호
    • /
    • pp.88-97
    • /
    • 2012
  • The muscle strengths in various postures are still used in the workplace, although mechanization and automation have been continuously accomplished. The aim of this study is to measure the maximum muscle strength and analyze the muscle fatigue during the various wrench jobs which are one of the upper limbs related works. Four hundreds and eighty five college students (243 males and 242 females) participated in this study. Twelve muscle strengths which are using for pulling, pushing, lifting and lowering the wrench with various postures are measured. For every moment, the muscle strengths for both hands were measured. In each measurement, five seconds averaged value and peak value were collected. The averaged value of preferred hand and non-preferred hand was compared. Also, the averaged value of opposite movement was compared through t-test. The fatigue of agonist for each movement was analyzed using EMG analysis. The result of this study can provide some basic information not only in designing the tools in work but also in selection, training and management of workers.

고전류 $CO_2$용접에서의 금속이행 및 스패터 발생 현상에 관한 연구 (A Study on the Metal Transfer and Spatter Generation in High Current $CO_2$ Welding)

  • 김남훈;유회수;김희진;고진현
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.51-57
    • /
    • 2003
  • The metal transfer in $CO_2$ welding shows the transition of transfer mode from short-circuiting to repelled transfer will the increase of welding current. While the short-circuiting mode in $CO_2$ welding has been studied very extensively relating with droplet formation and spatter generation, the repelled transfer has little been understood. In this study, high current $CO_2$ welding has been performed with bead-on-plate welds along with the waveform analyzer and high speed camera. The image of high speed camera was synchronized with its waveform so that the moment of spatter generation could be realized during drop detachment. As a results of this study, it was found that welding arc changes its location either once or three times and thus single or double pulse signals were developed in the voltage waveform. Whenever the arc moved its location, new arc was developed in a explosive way and thus it caused spatter generation. Specially severe spattering took place when the waveform showed a double-peak pattern. As a consequence of these results, new waveform control techniques could be suggested for suppressing the spatter generation in the high-current $CO_2$ welding.

Maximum damage prediction for regular reinforced concrete frames under consecutive earthquakes

  • Amiri, Gholamreza Ghodrati;Rajabi, Elham
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.129-142
    • /
    • 2018
  • The current paper introduces a new approach for development of damage index to obtain the maximum damage in the reinforced concrete frames caused by as-recorded single and consecutive earthquakes. To do so, two sets of strong ground motions are selected based on maximum and approximately maximum peak ground acceleration (PGA) from "PEER" and "USGS" centers. Consecutive earthquakes in the first and second groups, not only occurred in similar directions and same stations, but also their real time gaps between successive shocks are less than 10 minutes and 10 days, respectively. In the following, a suite of six concrete moment resisting frames, including 3, 5, 7, 10, 12 and 15 stories, are designed in OpenSees software and analyzed for more than 850 times under two groups of as-recorded strong ground motion records with/without seismic sequences phenomena. The idealized multilayer artificial neural networks, with the least value of Mean Square Error (MSE) and maximum value of regression (R) between outputs and targets were then employed to generate the empirical charts and several correction equations for design utilization. To investigate the effectiveness of the proposed damage index, calibration of the new approach to existing real data (the result of Park-Ang damage index 1985), were conducted. The obtained results show good precision of the developed ANNs-based model in predicting the maximum damage of regular reinforced concrete frames.

Bilinear elastodynamical models of cracked concrete beams

  • Pandey, Umesh Kumar;Benipal, Gurmail S.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.465-498
    • /
    • 2011
  • Concrete structures are generally cracked in flexural tension at working loads. Concrete beams with asymmetric section details and crack patterns exhibit different flexural rigidity depending upon the sense of the applied flexural moment. In this paper, three different models, having the same natural period, of such SDOF bilinear dynamical systems have been proposed. The Model-I and Model-II have constant damping coefficient, but the latter is characterized by two stiffness coefficients depending upon the sense of vibration amplitude. The Model-III, additionally, has two damping coefficients as well. In this paper, the dynamical response of Model-III to sinusoidal loading has been investigated and compared with that of Model-II studied earlier. It has been found that Model-III exhibits regular and irregular sub-harmonics, jump phenomena and strong sensitivity to initial conditions, forcing frequency, system period as well as the sense of peak sinusoidal force. The constant sustained load has been found to affect the natural period of the dynamical system. The predictions of Model-I have been compared with those of the approximate linear model adopted in present practice. The behaviour exhibited by different models of the SDOF cracked elastic concrete structures under working loads and the theoretical and practical implications of the approach followed have been critically evaluated.

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

Column-loss response of RC beam-column sub-assemblages with different bar-cutoff patterns

  • Tsai, Meng-Hao;Lua, Jun-Kai;Huang, Bo-Hong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.775-792
    • /
    • 2014
  • Static loading tests were carried out in this study to investigate the effect of bar cutoff on the resistance of RC beam-column sub-assemblages under column loss. Two specimens were designed with continuous main reinforcement. Four others were designed with different types of bar cutoff in the mid-span and/or the beam-end regions. Compressive arch and tensile catenary responses of the specimens under gravitational loading were compared. Test results indicated that those specimens with approximately equal moment strength at the beam ends had similar peak loading resistance in the compressive arch phase but varied resistance degradation in the transition phase because of bar cutoff. The compressive bars terminated at one-third span could help to mitigate the degradation although they had minor contribution to the catenary action. Among those cutoff patterns, the K-type cutoff presented the best strength enhancement. It revealed that it is better to extend the steel bars beyond the mid-span before cutoff for the two-span beams bridging over a column vulnerable to sudden failure. For general cutoff patterns dominated by gravitational and seismic designs, they may be appropriately modified to minimize the influence of bar cutoff on the progressive collapse resistance.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.