• Title/Summary/Keyword: peak ground motion

Search Result 213, Processing Time 0.021 seconds

Effect of Cyclic Soil Model on Seismic Site Response Analysis (지반 동적거동모델에 따른 부지응답해석 영향연구)

  • Lee, Jinsun;Noh, Gyeongdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.23-35
    • /
    • 2015
  • Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes (유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.

Lower Limbs Muscle Comparative Research for Verification Effect of Rehabilitation Training Program of Total Hip Arthroplasty (재활운동 프로그램에 참가한 엉덩인공관절 수술자의 하지근력 변화에 대한 비교연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.543-548
    • /
    • 2010
  • The purpose of this study was to examine the differences in kinetics between 6 months of rehabilitation training and 12 months of rehabilitation training after total hip arthroplasty. 10 unilateral THA participants performed kinetic tests. Three dimensional kinematics and hip flexors and abductors electromyography (EMG) were collected during each trial. T-test was used for statistical analysis (p<0.05). There was no significant difference in EMG data between the two groups, but the mean comparison EMG data was higher in the 12 months rehabilitation training group than the 6 months rehabilitation training group. The moment value was found with motion-dependent interaction analyzing method which was used by Feltner and Dapena. There was no significant difference between moment values of the two groups. There was no significant difference between ground reaction forces of the two groups; however, there were some differences shown in Fz (vertical reaction force) between the two groups ($892{\pm}104\;N$, $820{\pm}87\;N$). The first peak impact force was about 9% lower in the 12 months group compared to the 6 months group. The second peak active force was nearly equal between the two groups. More research is necessary to determine exactly what constitutes optimal rehabilitation training biomechanics for patients with total hip arthroplasty.