• Title/Summary/Keyword: peak factors

Search Result 908, Processing Time 0.034 seconds

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

Characteristics of Shear Behavior for Coarse Grained Materials Based on Large Scale Direct Shear Test (III) - Final Comprehensive Analysis - (대형직접전단시험을 이용한 조립재료의 전단거동 특성 (III) - 최종 종합 분석 -)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Hong, Sung-Yun;Oh, Gi-Dae;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.39-54
    • /
    • 2009
  • Large scale direct shear tests were carried out to analyze the shear behavior of crushed rocks at local representative quarries. Shear strength for each specimen was derived and the effects on shear behavior induced by the variation of factors such as particle size, water immersion, density, uniformity coefficient, and particle breakage were evaluated and quantitatively compared with previous studies. The opportunity was also taken to identify stress-dilatancy relation of crushed rocks following the energy-based theory and friction coefficients at critical state as well as peak friction angles and dilation angles were estimated. As a result of tests it was found that uniaxial compressive strength and particle breakage of the parent rocks have crucial effect on internal friction angles; in addition, dilatancy at the failure showed strong relationship as well.

Theoretical Study of Effective Resistance Exercise for Sarcopenia

  • Lee Sang Hyun;Jeong Hwan Jong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Sarcopenia is a phenomenon in which muscle function, including muscle strength, deteriorates as muscle mass decreases in the process of increasing age. The diagnosis of sarcopenia utilizes total muscle mass and limb muscle mass, and limb muscle mass is expressed as height squared, body weight, and BMI. Each divided value is used as an index, mainly less than 7.23 kg/m2 for men and less than 5.67 kg/m2 for women. Grip strength, standing up from a chair, and walking speed were mainly used as physical function factors, and grip strength less than 27 kg for men and less than 16 kg for women were used as indicators. The limb muscle mass showed a decreasing trend after peaking in the mid-20s in men, and maintaining a gradual peak in women from the mid-20s to the mid-40s, showing a more rapid decline in men. The rate of decrease in muscle mass and strength continues to increase after the age of 20, and muscle strength rapidly decreases after the age of 80. In Korean men, total muscle mass and limb muscle mass show a decreasing trend from the mid-30s, and a more markedly rapid decrease from the age of 60. For women, it remains constant from the age of 30 to the age of 50, then gradually decreases after the mid-50s, and shows a rather rapid decrease after the mid-70s, showing a more gradual decrease than that of men. Men show a sharp decrease from the mid-40s when limb muscle mass is divided by height squared, and women show a marked decrease after 70 years old when limb muscle mass is divided by height squared. Exercise for the prevention and treatment of sarcopenia results in an increase in protein assimilation hormone, an increase in antioxidant activity, a decrease in inflammation, an increase in muscle insulin sensitivity, and an increase in protein synthesis. Resistance exercise is basically used, and aerobic exercise and equilibrium A combination of exercises is effective. In addition, for a more efficient effect of sarcopenia through resistance exercise, it is necessary to supplement nutrition including protein.

A Study on the Design Method of Magnetizing Yoke Circuit Constant of 200kJ Magnetizer for Rotor Magnetization of High Capacity Permanent Magnet Motors (고용량 영구자석형 모터의 회전자 착자를 위한200 kJ급 착자기의 착자요크 회로정수 설계 방법에 관한 연구)

  • Jeong Minuk;SoongKeun Lee;GwonHu Baek;TaeKue Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.21-30
    • /
    • 2023
  • As the adoption and high-performance enhancement of Electric Vehicles continue, the demand for high-output motors and high-capacity Magnetizer for producing large-scale IPMSM is increasing. The maximum peak current of the magnetization and the capacitor discharge time, which are important factors in the magnetization process, are determined by the circuit constants of the magnetizer. In this paper, we analyze the magnetizing system using MATLAB SIMULINK to design the circuit constant of the magnetizing yoke for magnetizing design and present the design procedure for Design the circuit constant. As a result, the parameters of the magnetizing yoke were derived to be 0.015[ohm] and 0.035[mH] based on the capacitance of 15,000[uF] and voltage of 5,000[V].

An experimental study on triaxial failure mechanical behavior of jointed specimens with different JRC

  • Tian, Wen-Ling;Yang, Sheng-Qi;Dong, Jin-Peng;Cheng, Jian-Long;Lu, Jia-wei
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.181-195
    • /
    • 2022
  • Roughness and joint inclination angle are the important factors that affect the strength and deformation characteristics of jointed rock mass. In this paper, 3D printer has been employed to make molds firstly, and casting the jointed specimens with different joint roughness coefficient (JRC), and different joint inclination angle (α). Conventional triaxial compression tests were carried out on the jointed specimens, and the influence of JRC on the strength and deformation parameters was analyzed. At the same time, acoustic emission (AE) testing system has been adopted to reveal the AE characteristic of the jointed specimens in the process of triaxial compression. Finally, the morphological of the joint surface was observed by digital three-dimensional video microscopy system, and the relationship between the peak strength and JRC under different confining pressures has been discussed. The results indicate that the existence of joint results in a significant reduction in the strength of the joint specimen, JRC also has great influence on the morphology, quantity and spatial distribution characteristics of cracks. With the increase of JRC, the triaxial compressive strength increase, and the specimen will change from brittle failure to ductile failure.

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

Relationship Between Muscle Mass and Usual Walking Speed Mediated by Muscle Strength, Respiration and Depression in Elderly Female

  • Yun-jeong Baek;Chung-hwi Yi;Oh-yun Kwon;Sang-hyun Cho
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.202-210
    • /
    • 2023
  • Background: The elderly population is increasing rapidly worldwide. Muscle mass, usual walking speed (UWS), knee extension strength (KES), hand grip strength (HGS), peak expiratory flow (PEF), and depression is used for sarcopenia diagnosis. All four of these factors (KES, HGS, PEF, and depression) correlated with UWS and also to muscle mass. But, many studies have suggested that no correlation exists between muscle mass and UWS. Objects: This study aimed: 1) to investigate whether muscle mass reduction affected UWS, as mediated by KES, HGS, PEF and depression, and 2) to explored whether significant changes in these mediators varied by the body segment in which muscle mass evaluated in elderly female aged 65-80 years. Methods: A total of 100 female aged 65-80 years were surveyed. Muscle mass was measured by body segment (upper and lower segment), and KES, HGS, PEF, depression, and UWS were also assessed. Median analyses were progressed in IBM SPSS software (ver. 23.0, IBM Co.) using a downloaded INDIRECT macro. Results: The direct effect of the KES and PEF were significant, and the indirect effect of KES and PEF were not significant. Thus, KES and PEF served as full mediators of the effect of muscle mass on UWS. Regardless of bodily region, KES and PEF combined with muscle mass were significant mediators of UWS, with similar indirect effect sizes. Conclusion: KES and PEF are the only mediators regardless of body part. Therefore, mediating the KES and PEF may prevent sarcopenia progression in elderly female. Also, sarcopenia can be readily assessed by evaluating either the upper or lower body; it is not necessary to measure total muscle mass.

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.