• Title/Summary/Keyword: peak carbon monoxide

Search Result 33, Processing Time 0.028 seconds

Emission of Carbon Monoxide and Carbon Dioxide Gases during Fire Tests of Specimens Treated with Phosphorus-Nitrogen Additives (인-질소 첨가제로 처리된 시험편의 연소 시에 발생하는 일산화탄소와 이산화탄소 생성)

  • Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.609-614
    • /
    • 2015
  • This study was to investigate the production of combustion toxic gases of pinus rigida specimens treated with pyrophosphoric acid (PP)/4ammonuium ion ($4NH_4{^+}$), methylenepiperazinomethyl-bis-phosphonic acid (PIPEABP) and PIPEABP/$4NH_4{^+}$. Each pinus rigida plates was painted in three times with 15 wt% in the aqueous solution followed by drying the species at room temperature. Emission of combustion toxic gases was examined by the cone calorimeter (ISO 5660-1). First-time to peak mass loss rate (1st-$TMLR_{peak}$) treated with chemicals was delayed upto 66.7~250.0% compared to those of untreated specimens. For test pieces treated with the chemicals, the emission of peak carbon monoxide ($CO_{peak}$) values of 0.0136~0.0178% and peak carbon dioxide ($CO_{2\;peak}$) value of 0.04432~0.3648% were obtained, which were higher than those for the virgin plate. In particular, oxygen emission is much higher than the level of 15% which can be fatal to humans. Therefore, the resulting risk could be eliminated. However it is supposed that the combustion-toxicities were partially increased compared to those of virgin plate.

Combustion Gas-emission of Medium Density Fibreboard (MDF) Treated with Alkylenediaminialkyl-bis-phosphonic Acids and Bis-(dimethylaminomethyl) Phosphinic Acid (알킬렌디아미노알킬-비스-포스폰산과 비스-디메틸아미노메틸 포스핀산으로 처리된 중질섬유판의 연소가스 발생)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.112-117
    • /
    • 2017
  • This study demonstrated the emission of combustion gases of medium density fibreboard (MDF)s coated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP), or bis-(dimethylaminomethyl) phosphinic acid (DMDAP). Each MDFs were coated in three times with a brush with 15 wt% aqueous solution of the phosphorus-nitrogen acid additives. After the specimens were dried at room temperature, the emission of combustion gases was tested using a cone calorimeter (ISO 5660-1, 2). The peak smoke production rate ($SPR_{peak}$) of the specimens coated with phosphorus-nitrogen acids was 18.5 to 41.5%, which is lower than that of using the virgin plate. However, the production of peak carbon monoxide ($CO_{peak}$) was 6.7 to 24.2% higher than that of using the virgin plate. Also, the peak carbon dioxide ($CO_{2peak}$) was 4.2 to 24.4% lower than that of using virgin plate. While the peak oxygen depletion rate was much higher than the level of 15%, which can be fatal to humans and the resulting risk could thus be eliminated. Overall, the combustibility of coated specimens was partially suppressed, but showed a negative effect on the reduction of carbon monoxide.

Effects of Pilot Injection on Low Temperature Diesel Combustion (파일럿 분사가 저온 디젤 연소에 미치는 영향)

  • Han, Sang-Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.

Analysis of Tropospheric Carbon Monoxide using MOPITT data

  • Lee, Sang-Hee;Park, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.373-377
    • /
    • 2002
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This work analyzes tropospheric carbon monoxide distributions using MOPITT data in East Asia and compared ozone distributions. In general, seasonal CO variations are characterized by a spring peak and decreased in the summer. Also, this work revealed that the seasonal cycles of CO are spring maximum and summer minimum with averaged concentrations ranging from 118ppbv to 170ppbv. The CO monthly means show a similar profiles to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, transport of the CO in the northeast Asia. The CO and O3 seasonal cycles in northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and O3, which tend to give the apparent minimum in summer.

  • PDF

Production of Carbon Monoxide and Carbon Dioxide Gases in the Combustion Tests (연소 시험에서 발생하는 일산화탄소와 이산화탄소의 발생)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.7-13
    • /
    • 2015
  • This study was performed to test the production of combustion toxic gases by Pinus rigida specimens treated with various types of methylpiperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Three coats of 15 wt% $PIPEABPM^{n+}$ and PIPEABP solutions were applied to plates of Pinus rigida at room temperature. After drying the treated specimens, the production of combustion toxic gases was examined using a cone calorimeter (ISO 5660-1). The specimens treated with $PIPEABPM^{n+}$ showed lower carbon monoxide production ($CO_{2\;peak}$; 0.0136~0.0178% at 532~678 s) than the PIPEABP plates, except for the specimen treated with $PIPEABPFe^{3+}$. In addition, the peak carbon dioxide production ($CO_{2\;peak}$) was lower (0.03648~0.3648% at 373~433 s) than that of the PIPEABP-treated plate. Notably, oxygen production was much higher than 15%, which can be fatal to humans. Therefore, the resulting risk could be eliminated. The results indicate that the combustion toxicities were partially decreased due to treatment of the virgin plate with $PIPEABPM^{n+}$.

Evaluation of Combustion Gas for Carbon Oxide of Wood Coated with Bis-(dialkylaminoalkyl) Phosphinic Acids Additives

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.65-72
    • /
    • 2016
  • This study examined the generation of combustion toxic gases of pinus rigida specimens processed with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibutylaminomethyl) phosphinic acid (DBDAP). Each pinus rigida plate was coated three times with 15 wt.% flame retardants in an aqueous solution. The specimens were then dried at room temperature. The production of combustion toxic gases was investigated using a cone calorimeter (ISO 5660-1). The first time to peak mass loss rate ($1^{st}-TMLR_{peak}$) processed with the chemical additives decreased to 5.9 from 41.2% compared with the unprocessed specimen. The second time to the peak mass loss rate ($2^{nd}-TMLR_{peak}$) for the processed specimens was decreased 1.8% for DMDAP and 5.3% for DBDAP and increased 1.8% for DEDAP. The peak carbon monoxide ($CO_{peak}$) production was 1.5 to 2.0 times higher than that of the unprocessed plate. The peak carbon dioxide ($CO_{2peak}$) production was reduced 0.01 times for DMDAP and increased 1.15 to 1.19 times for DEDAP and DBDAP compared with the unprocessed specimens. In particular, the oxygen concentration was much higher than 15%, which can be fatal to humans and the resulting hazard can be eliminated. Overall, the combustion toxicity of flammable gas were increased partially by the chemical additives compared with those of the unprocessed plate.

A Stochastic Study for the Emergency Treatment of Carbon Monoxide Poisoning in Korea (일산화탄소중독(一酸化炭素中毒)의 진료대책(診療對策) 수립(樹立)을 위한 추계학적(推計學的) 연구(硏究))

  • Kim, Yong-Ik;Yun, Dork-Ro;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.135-152
    • /
    • 1983
  • Emergency medical service is an important part of the health care delivery system, and the optimal allocation of resources and their efficient utilization are essentially demanded. Since these conditions are the prerequisite to prompt treatment which, in turn, will be crucial for life saving and in reducing the undesirable sequelae of the event. This study, taking the hyperbaric chamber for carbon monoxide poisoning as an example, is to develop a stochastic approach for solving the problems of optimal allocation of such emergency medical facility in Korea. The hyperbaric chamber, in Korea, is used almost exclusively for the treatment of acute carbon monoxide poisoning, most of which occur at home, since the coal briquette is used as domestic fuel by 69.6 per cent of the Korean population. The annual incidence rate of the comatous and fatal carbon monoxide poisoning is estimated at 45.5 per 10,000 of coal briquette-using population. It offers a serious public health problem and occupies a large portion of the emergency outpatients, especially in the winter season. The requirement of hyperbaric chambers can be calculated by setting the level of the annual queueing rate, which is here defined as the proportion of the annual number of the queued patients among the annual number of the total patients. The rate is determined by the size of the coal briquette-using population which generate a certain number of carbon monoxide poisoning patients in terms of the annual incidence rate, and the number of hyperbaric chambers per hospital to which the patients are sent, assuming that there is no referral of the patients among hospitals. The queueing occurs due to the conflicting events of the 'arrival' of the patients and the 'service' of the hyperbaric chambers. Here, we can assume that the length of the service time of hyperbaric chambers is fixed at sixty minutes, and the service discipline is based on 'first come, first served'. The arrival pattern of the carbon monoxide poisoning is relatively unique, because it usually occurs while the people are in bed. Diurnal variation of the carbon monoxide poisoning can hardly be formulated mathematically, so empirical cumulative distribution of the probability of the hourly arrival of the patients was used for Monte Carlo simulation to calculate the probability of queueing by the number of the patients per day, for the cases of one, two or three hyperbaric chambers assumed to be available per hospital. Incidence of the carbon monoxide poisoning also has strong seasonal variation, because of the four distinctive seasons in Korea. So the number of the patients per day could not be assumed to be distributed according to the Poisson distribution. Testing the fitness of various distributions of rare event, it turned out to be that the daily distribution of the carbon monoxide poisoning fits well to the Polya-Eggenberger distribution. With this model, we could forecast the number of the poisonings per day by the size of the coal-briquette using population. By combining the probability of queueing by the number of patients per day, and the probability of the number of patients per day in a year, we can estimate the number of the queued patients and the number of the patients in a year by the number of hyperbaric chamber per hospital and by the size of coal briquette-using population. Setting 5 per cent as the annual queueing rate, the required number of hyperbaric chambers was calculated for each province and for the whole country, in the cases of 25, 50, 75 and 100 per cent of the treatment rate which stand for the rate of the patients treated by hyperbaric chamber among the patients who are to be treated. Findings of the study were as follows. 1. Probability of the number of patients per day follows Polya-Eggenberger distribution. $$P(X=\gamma)=\frac{\Pi\limits_{k=1}^\gamma[m+(K-1)\times10.86]}{\gamma!}\times11.86^{-{(\frac{m}{10.86}+\gamma)}}$$ when$${\gamma}=1,2,...,n$$$$P(X=0)=11.86^{-(m/10.86)}$$ when $${\gamma}=0$$ Hourly arrival pattern of the patients turned out to be bimodal, the large peak was observed in $7 : 00{\sim}8 : 00$ a.m., and the small peak in $11 : 00{\sim}12 : 00$ p.m. 2. In the cases of only one or two hyperbaric chambers installed per hospital, the annual queueing rate will be at the level of more than 5 per cent. Only in case of three chambers, however, the rate will reach 5 per cent when the average number of the patients per day is 0.481. 3. According to the results above, a hospital equipped with three hyperbaric chambers will be able to serve 166,485, 83,242, 55,495 and 41,620 of population, when the treatmet rate are 25, 50, 75 and 100 per cent. 4. The required number of hyperbaric chambers are estimated at 483, 963, 1,441 and 1,923 when the treatment rate are taken as 25, 50, 75 and 100 per cent. Therefore, the shortage are respectively turned out to be 312, 791. 1,270 and 1,752. The author believes that the methodology developed in this study will also be applicable to the problems of resource allocation for the other kinds of the emergency medical facilities.

  • PDF

Analysis of Tropospheric Carbon Monoxide in the Northeast Asia from MOPITT

  • Lee, Sang-Hee;Choi, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 2003
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer that launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This study analyzes tropospheric carbon monoxide distributions using MOPITT data and compare with ozone distributions in Northeast Asia. In general, seasonal CO variations are characterized by a peak in spring and decrease in summer. Also, this study revealed that the seasonal cycles of CO are maximum in spring and minimum in summer with average concentrations ranging from 118ppbv to 170ppbv. The monthly average of CO shows a similar profile to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, or the transport of the CO in the northeast Asia. The CO and $O_3$ seasonal cycles in the Northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of $O_3$ and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and $O_3$, which tend to give the apparent minimum in summer.

A Study on the Diamond Synthesis by MPECVD using $CO-H_2$ Mixture ($CO-H_2$ 혼합 기체의 MPECVD 에 의한 다이아몬드 합성에 관한 연구)

  • Ku, Ja-Chun;Oh, Jeong-Seob;Hwang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.390-393
    • /
    • 1989
  • Diamond is synthesized from the gaseous mixture of carbon monoxide and hydrogen by microwave PECVD. $10{\times}10mm^2$ silicon wafers are used as the substrate,and it can be raised more than $900^{\circ}C$ by microwave absorption, radiation by plasma and bombardment of ions. The changes of the morphology and the growth rates of the deposits with the experimental conditions are examined by Scanning Electron Microscopy. The d values of all the deposited films concide with those of powder diffraction data in XRD. In Raman spectra, the peak of the deposit coincides with that of the natural diamond which has a value of 1332.5 $cm^{-1}$, and the broad peak from 1360 $cm^{-1}$to 1600 $cm^{-1}$which represents the amorphous graphite was observed in the higher concentration of carbon monoxide.

  • PDF

Microplate Assay Measurement of Cytochrome P450-Carbon Monoxide Complexes

  • Choi, Suk-Jung;Kim, Mi-Ra;Kim, Sung-Il;Jeon, Joong-Kyun
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.332-335
    • /
    • 2003
  • Cytochrome P450 in microsomes can be quantitated using the characteristic 450 nm absorption peak of the CO adduct of reduced cytochrome P450. We developed a simple microplate assay method that is superior to previous methods. Our method is less laborious, suitable for analyzing many samples, and less sensitive to sample aggregation. Microsome samples in microplate wells were incubated in a CO chamber rather than bubbled with CO gas, and then reduced with sodium hydrosulfite solution. This modification allowed a reliable and reproducible assay by effectively eliminating variations between estimations.