• Title/Summary/Keyword: peach first flowering date

Search Result 2, Processing Time 0.027 seconds

Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios (WRF를 이용한 RCP 4.5와 8.5 시나리오 하의 21세기 벚, 복숭아, 배 개화일 변화 전망)

  • Hur, Jina;Ahn, Joong-Bae;Shim, Kyo-Moon
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.693-706
    • /
    • 2015
  • A shift of first fowering date (FFD) of spring blossoms (cherry, peach and pear) over the northest Asia under global warming is investiaged using dynamically downscaled daily temperature data with 12.5 km resolution. For the study, we obatained gridded daily data with Historical (1981~2010), and Representative Concentration Pathway (RCP) (2021~2100) 4.5 and 8.5 scenarios which were produced by WRFv3.4 in conjunction with HadGEM2-AO. A change on FFDs in 21st century is estimated by applying daily outputs of WRFv3.4 to DTS phonological model. Prior to projection on future climate, the performances of both WRFv3.4 and DTS models are evaluated using spatial distribution of climatology and SCR diagram (Normalized standard deviation-Pattern correlation coefficient-Root mean square difference). According to the result, WRFv3.4 and DTS models well simulated a feature of the terrain following characteristics and a general pattern of observation with a marigin of $1.4^{\circ}C$ and 5~6 days. The analysis reveals a projected advance in FFDs of cherry, peach and pear over the northeast Asia by 2100 of 15.4 days (9.4 days). 16.9 days (10.4 days) and 15.2 days (9.5 days), respectively, compared to the Historical simulation due to a increasing early spring (Februrary to April) temperature of about $4.9^{\circ}C$ ($2.9^{\circ}C$) under the RCP 8.5 (RCP 4.5) scenarios. This indicates that the current flowering of the cherry, peach and pear over analysis area in middle or end of April is expected to start blooming in early or middle of April, at the end of this century. The present study shows the dynamically downscaled daily data with high-resolution is helpeful in offering various useful information to end-users as well as in understanding regional climate change.

Adaption of Phenological Eventsin Seoul Metropolitan and Suburbsto Climate Change (기후변화에 따른 수도권 생물계절 반응 변화에 관한 연구)

  • Hyomin Park;Minkyung Kim;Sangdon Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • The rapid advance of technology has accelerated global warming. As 50.4 percent of South Korea's population is concentrated in the Seoul Metropolitan Area, which has become a considerable emitter of greenhouse gases, the city's average temperature is expected to increase more rapidly than in other areas in the country. A rise in the average temperature would affect everyday life and urban ecology; thus, appropriate measures to cope with the forthcoming disaster are in need. This study analyzed the changes in plant phenological phases from the past to the present based on temperatures (average temperature of Feb, Mar, April) observed in seven different weather stations nearthe Seoul Metropolitan Area (Ganghwa, Seoul, Suwon, Yangpyeong, Icheon, Incheon, and Paju) and the first flowering dates of Plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), Cherry tree (Prunus serrulate), Peach tree (Prunus persica), and Pear tree (Pyrus serotina). Then, RCP (Representative Concentration Pathways) 2.6 and 8.5 scenarios were used to predict the future temperature in the Seoul Metropolitan Area and how it will affect plant phenological phases. Furthermore, the study examined the differences in the flowering dates depending on various strategies to mitigate greenhouse gases. The result showed that the rate of plant phenological change had been accelerated since the 1900s.If emission levels remain unchanged, plants will flower from 18 to 29 earlier than they do now in the Seoul Metropolitan Area, which would be faster than in other areas in the country. This is because the FFD (First Flowering Date), is highly related to temperature changes. The Seoul Metropolitan Area, which has been urbanized more rapidly than any other areas, is predicted to become a temperature warming, forcing the FFDs of the area to occur faster than in the rest of the country. Changes in phenology can lead to ecosystem disruption by causing mismatches in species interacting with each otherin an ecosystem. Therefore, it is necessary to establish strategies against temperature warming and FFD change due to urbanization.