• 제목/요약/키워드: pd catalyst

검색결과 284건 처리시간 0.023초

산성 Fe-ZSM5 담체에 담지된 귀금속 촉매를 활용한 암모니아의 선택적 산화반응 (Selective Catalytic Oxidation of Ammonia over Noble Catalysts Supported on Acidic Fe-ZSM5 Supports)

  • 김민성;이대원;이관영
    • 청정기술
    • /
    • 제18권1호
    • /
    • pp.89-94
    • /
    • 2012
  • 본 연구에서는 산성을 갖는 Fe-ZSM5를 담체로 활용하여 Pd, Pt 등 귀금속을 담지한 후, 제조 촉매의 암모니아의 선택적 산화반응 활성을 평가하였다. 이들 중 Pt/Fe-ZSM5가 Pd/Fe-ZSM5 보다 높은 활성을 나타냈다. 또한 Pt/Fe-ZSM5 촉매에서 ZSM5 구조체 내 Fe의 이온교환량을 달리한 촉매의 실험을 수행하여, 암모니아의 선택적 산화반응에 가장 우수한 활성을 보이는 최적 조성비를 탐색하였다. 그 결과, Fe의 이온교환량이 적을수록 반응 활성이 증가하는 경향을 보였고, 저온 영역인 $250^{\circ}C$에서 100%의 암모니아 전환율을 나타냈다. 이와 같이 암모니아의 선택적 산화반응에 효과적인 Fe-ZSM5 담체에 대하여, ICP-AES, BET, XRD, $NH_3$-TPD 등과 같은 특성 분석을 수행하여 제조 촉매의 구조와 물성이 반응활성에 미치는 영향을 검토해보았다.

Pd-ZSM-5 촉매 상에서 메탄의 연소 (Catalytic Combustion of Methane over Pd-ZSM-5 Catalysts)

  • 엄기태;박진우;하재목;함현식
    • 공업화학
    • /
    • 제9권6호
    • /
    • pp.878-883
    • /
    • 1998
  • Pd-ZSM-5 촉매 상에서 메탄의 연소반응을 수행하였다. 담체는 저온상압법으로 합성한 ZSM-5를 이용하였다. 담체인 ZSM-5의 $SiO_2/Al_2O_3$ 몰비 변화에 따른 메탄의 전환율 변화를 조사해 보았다. 그리고 합성한 Pd-ZSM-5 촉매의 메탄 전환율을 상업화된 Pd-ZSM-5(PQ Co.) 및 $PdO/{\gamma}-Al_2O_3$와 비교하여 보았다. $SiO_2/Al_2O_3$ 몰비 변화에 따른 메탄의 연소반응실험 결과 $SiO_2/Al_2O_3$ 몰비가 작을수록 높은 메탄의 전환율을 보였으며, Pd을 정량화시켜 메탄의 연소속도를 비교한 결과, 역시 $SiO_2/Al_2O_3$ 몰비가 작을수록 빠르게 나타났다. 합성한 Pd-ZSM-5가 상업화된 Pd-ZSM-5(PQ Co.)보다 우수한 메탄 전환율을 나타냈다. 촉매 특성 분석 결과들로부터 메탄의 연소반응에서 촉매에 흡착하는 산소의 결합세기가 반응속도에 매우 큰 영향을 미침을 알 수 있었다.

  • PDF

Pd/Cu/PVP 콜로이드를 이용한 고종횡비 실리콘 관통전극 내 구리씨앗층의 단차피복도 개선에 관한 연구 (A Study on the Seed Step-coverage Enhancement Process (SSEP) of High Aspect Ratio Through Silicon Via (TSV) Using Pd/Cu/PVP Colloids)

  • 이동열;이유진;김현종;이민형
    • 한국표면공학회지
    • /
    • 제47권2호
    • /
    • pp.68-74
    • /
    • 2014
  • The seed step-coverage enhancement process (SSEP) using Pd/Cu/PVP colloids was investigated for the filling of through silicon via (TSV) without void. TEM analysis showed that the Pd/Cu nano-particles were well dispersed in aqueous solution with the average diameter of 6.18 nm. This Pd/Cu nano-particles were uniformly deposited on the substrate of Si/$SiO_2$/Ti wafer using electrophoresis with the high frequency Alternating Current (AC). After electroless Cu deposition on the substrate treated with Pd/Cu/PVP colloids, the adhesive property between deposited Cu layer and substrate was evaluated. The Cu deposit obtained by SSEP with Pd/Cu/PVP colloids showed superior adhesion property to that on Pd ion catalyst-treated substrate. Finally, by implementing the SSEP using Pd/Cu/PVP colloids, we achieved 700% improvement of step coverage of Cu seed layer compared to PVD process, resulting in void-free filling in high aspect ratio TSV.

Enhanced Hydrogen Production from Methanol/Water Photo-Splitting in TiO2 Including Pd Component

  • Kwak, Byeong-Sub;Chae, Jin-Ho;Kim, Ji-Yeon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1047-1053
    • /
    • 2009
  • The future use of hydrogen as an energy source is expected to increase on account of its environmentally friendliness. In order to enhance the production of hydrogen, Pd ions (0.01, 0.05, 0.1, and 0.5 mol%) were incorporated $TiO_2$ (Pd-$TiO_2$) and used as a photocatalyst. The UV-visible absorbance decreased with increasing level of palladium incorporation without a wavelength shift. Although all the absorption plots showed excitation characteristics, there was an asymmetric tail observed towards a higher wavelength caused by scattering. However, the intensity of the photoluminescence (PL) curves of Pd-$TiO_2$ was smaller, with the smallest case being observed at 0.1 and 0.5 mol% Pd-$TiO_2$, which was attributedto recombination between the excited electrons and holes. Based on these optical characteristics, the evolution of $H_2$ from methanol/water (1:1) photo-splitting over Pd-$TiO_2$ in the liquid system was enhanced, compared with that over pure $TiO_2$. In particular, 2.4 mL of $H_2$ gas was produced after 8 h when 0.5 g of a 1.0 mol% Pd-$TiO_2$ catalyst was used. $H_2$ was stably evolved even after 28 h without catalytic deactivation, and the amount of $H_2$ produced reached 14.5 mL after 28 h. This is in contrast to the case of the Pd 0.1 mol% impregnated $TiO_2$ of $H_2$ evolution of 17.5 mL due to the more decreasedelectron-hole recombination.

연료전지 전극촉매용 팔라듐 나노입자 형상 제어 및 산소환원반응 성능 평가 (Preparation of Shape-Controlled Palladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction)

  • 김경희;이정돈;이효준;박석희;임성대;정남기;박구곤
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.450-457
    • /
    • 2018
  • To design the practical core-shell electrocatalysts, combination of core and shell materials is important to meet catalytic activity and durability target. In general, Pd is considered as a good core material due to its best activity caused by strain/ligand effect. Preparing Pd nanoparticles can be a starting point in fabricating core-shell type electrocatalysts, much simplified Pd preparing process is suggested by using carbon monoxide (CO) as a reducing agent and/or capping agent. The solvent composition and reaction temperature can control to nanosheet, tetrahedron, and sphere without using additional stabilizer. Among them, Pd nanosheet which has mainly (111) plane showed about 3 times higher electrocatalytic activity for oxygen reduction reaction (ORR) to the spherical Pd nanoparticles. The enhanced ORR activity of Pd nanosheets can be attributed to the exposure of Pd (111) surface and the high electrochemical surface area. Therefore, we demonstrated that the shape of Pd nanomaterials is easily controlled via a facile reduction method using CO, and (111) plane-oriented Pd nanosheets can be a promising ORR catalysts and core material for polymer electrolyte fuel cells (PEFCs).

탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성 (Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles)

  • 김형균;이임렬
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Synthesis of Palladium Nanocubes/Nanorods and Their Catalytic Activity for Heck Reaction of Iodobenzene

  • Ding, Hao;Dong, Jiling
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.105-109
    • /
    • 2016
  • Palladium has been used as a catalyst not only in Suzuki and Heck cross coupling reaction in organic chemistry, but also in automobile industry for the reduction of vehicle exhausts. The catalytic activity of Pd nanoparticles depends strongly on their size and exposed crystalline facets. In this study, the single crystalline palladium nanocubes/nanorods were prepared in the presence of polyvinyl pyrrolidone (PVP) and potassium bromide (KBr) using the polyol method. Selected area diffraction pattern and high-resolution transmission electron microscopy (TEM) were performed by TEM. The result shows that the ratio of KBr/PVP is the key factor to determine whether the product is cubes or rods. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The catalytic activity of these Pd nanocubes towards heck reaction of iodobenzene with acrylate or acrylic acid was found to be higher than that of Pd nanorods. We suspect it is caused by the difference of energy state while Pd nanocubes is {100} plane and nanorods is {111} plane.

고성능 MISFET형 수소센서의 제작과 특성 (Fabrication of MISFET type hydrogen sensor for high Performance)

  • 강기호;박근용;한상도;최시영
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.317-323
    • /
    • 2004
  • We fabricated a MISFET using Pd/NiCr gate for the detecting of hydrogen gas in the air and investigated its electrical characteristics. To improve stability and high concenntration sensitivity and remove the blister generated by the penetration of hydrogen atoms Pd/NiCr catalyst gate metal are used as dual gate. To reduce the gate drift voltage caused by the inflow of hydrogen, the gate insulators of sensing and reference FFET were constructed with double insulation layers of silicon dioxide and silicon nitride. The hydrogen response of MISFET were amplified with the difference of gate voltages of both MISFET. To minimize the drift and the noise, we used a OP177 operational amplifier. The sensitivity of the Pd/NiCr gate MISFET was lower than that of Pd/Pt gate MISFET, but it showed good stability and ability to detect high concentration hydrogen up to 1000ppm.

Pd- 및 Pt-SiC 쇼트키 다이오드의 수소가스 감지 특성 (Hydrogen-Sensing Behaviors of Pd- and Pt-SiC Schottky Diodes)

  • 김창교;이주헌;조남인;홍진수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권7호
    • /
    • pp.388-393
    • /
    • 2000
  • Hydrogen-sensing behaviors of Pd- and Pt-SiC Schottky diodes, fabricated on the same SiC substrate, have been systematically compared and analyzed as a function of hydrogen concentration and temperature by I-V and$\DeltaI-t$ methods under steady-state and transient conditions. The effects of hydrogen adsorption on the device parameters such as the barrier height are investigated. The significant differences in their hydrogen sensing characteristics have been examined in terms of sensitivity limit, linearity of response, response rate, and response time. For the investigated temperature range, Pd-SiC Schottky diode shows better performance for H2 detection than Pt-SiC Schottky diode under the same testing conditions. The physical and chemical mechanisms responsible for hydrogen detection are discussed. Analysis of the steady-state reaction kinetics using I-V method confirmed that the atomistic hydrogen process is responsible for the barrier height change in the diodes.

  • PDF

O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성 (Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process)

  • 박진도;서정호;이학성
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.