Ten (E)-and (Z)-isomers of 2-phenylcyclopropylamine (PCA), 1-Me PCA, 2-Me-PCA, N-Me-PCA, and N, N-diMe PCA and fifteen o-. m-, p- isomers of (E) PCA with substituents of Me, Cl, F, OMe, OH were synthesized in this laboratory and tested for the inhibition of rat brain mitochondrial MAO-A and MAO-B. The effects of substituents, their positions, and stereochemistry on the inhibition were assessed for the compounds with substituents at cyclopropyl and amino groups and QSAR analyses were performed using the potency data of ring-substituted compounds. The best correlated QSAR equations are as follows : pI$_{50}$ = 0.804 $\pi^2$-0.834 Blo-1.069 Blm + 0.334 Lp-1.709 HDp +7.897 (r = 0.945, s =0.211, F = 16.691, p = 0.000) for the inhibition of MAO-A;PI$_{50}$= 1.815$\pi$-0.825 $\pi^2$-1.203R + 0.900 Es$^2$ + 0.869 Es$^3$ + 0.796 Es$^4$-0.992 HDp + 0.562 HAo + 3.893 (r = 0.982, s =0.178, F = 23.351, p = 0.000) for the inhibition of MAO-B. Based on the potency difference between stereoisomers of cyclopropylamine-modified compounds and an QSAR cavity near para position, two hydrophobic carities interacting with Me group, a hydrophobic site near para position, and an amino group binding site and that in addition to the same two hydrophotic cavities, hydrophotic area, steric boundaries, hydrogen-acceptor site, and amino group binding site, another steric boundary near para position and a hydrogen donating site near ortho position constitute active sites of MAO-B.
In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.
Principal component analysis (PCA) was conducted using hydrochemical data in four testbeds (A to D) built for the development of site characterization technologies to assess the hydrochemical processes controlling the hydrochemistry in each site. The PCA results indicated the nitrogen loading to deep bedrock aquifers through permeable fractures in Testbed A, the chemical weathering enhanced with the biodegradation of petroleum hydrocarbons in Testbed B, the reductive dechlorination in Testbed C, and the different hydrochemistry depending on the depth to bedrock in Testbed D, consistent with the characteristics of each site. In Testbeds B and D, outliers seemed to affect the PCA result probably due to the small number of samples, whereas the PCA result was still consistent with site characteristics. This study result indicates that the PCA is widely applicable to hydrochemical data for the assessment of major hydrochemical processes in contamination sites, which is useful for site characterization when combined with other site characterization technologies, e.g., geological survey, geophysical investigation, borehole logging. It is suggested that PCA is applied in contaminated sites to interpret hydrochemical data not only for the distribution of contamination levels but also for the assessment of major hydrochemical processes and contamination sources.
3점 굽힘 하중을 받는 단일 PET 및 평판형 압전 복합재료 작동기(PCA)의 파괴거동을 음향방출(AE) 법을 이용하여 살펴보았다. 단일 PET의 경우 최대 굽힘하중에서 발생한 AE신호는 고진폭 및 긴 유지시간을 갖는 특징을 보였으며 FFT에 의한 지배 주파수 대역을 확인한 결과 $100{\sim}230kHz$의 비교적 저주파수 대역이었다. PCA의 경우, stage 1에서 발생한 80dB이상의 고진폭 및 $170{\sim}223kHz$의 저 지배 주파수 대역을 갖는 신호는 PZT층에서의 취성파괴 및 PZT층과 인근 섬유층 사이의 층간분리에 의한 것으로 추정되었다. 상기의 AE거동 해석결과와 광학현미경 및 주사전자현미경에 의한 손상관찰에 근거하여 비대칭으로 적층된 PCA의 파괴거동과 관련한 AE특성을 규명하였다.
본 논문에서는 통계적 분석 기법인 주성분 분석과 비정칙치 분해를 이용한 문서 방법을 제안한다. 제안한 방법은 문서내의 주제어를 추출한 후, 추출된 주제어와 문장간의 거리가 가장 짧은 문장들을 중요 문장으로 추출하여 요약으로 제시한다. 주제어를 추출하기 위해서는 주성분 분석을 이용하였으며, 이는 문서 자체내의 빈도 정보와 단어간의 연관 정보를 이용한 것이다. 그리고, 중요 문장을 추출하기 위해 비정칙치 분해를 시행하여 문장 벡터와 주제어 벡터론 획득한 후, 두 벡터간의 유클리디언 거리를 계산하였다. 신문 기사를 대상으로 실험한 결과, 제안한 방법이 출현 빈도만을 이용한 방법과 주성분 분석만을 이용한 방법보다 성능이 우수함을 알 수 있었다.
본 논문은 주성분 분석과 퍼지 연관을 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 주성분 분석의 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택하기 때문에 문서군집의 내부구조를 더 잘 표현할 수 있다. 또한 퍼지연관 값을 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.
Boukhatem, B.;Kenai, S.;Hamou, A.T.;Ziou, Dj.;Ghrici, M.
Computers and Concrete
/
제10권6호
/
pp.557-573
/
2012
This paper discusses the combined application of two different techniques, Neural Networks (NN) and Principal Component Analysis (PCA), for improved prediction of concrete properties. The combination of these approaches allowed the development of six neural networks models for predicting slump and compressive strength of concrete with mineral additives such as blast furnace slag, fly ash and silica fume. The Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian regularization was used in all these models. They are produced to implement the complex nonlinear relationship between the inputs and the output of the network. They are also established through the incorporation of a huge experimental database on concrete organized in the form Mix-Property. Thus, the data comprising the concrete mixtures are much correlated to each others. The PCA is proposed for the compression and the elimination of the correlation between these data. After applying the PCA, the uncorrelated data were used to train the six models. The predictive results of these models were compared with the actual experimental trials. The results showed that the elimination of the correlation between the input parameters using PCA improved the predictive generalisation performance models with smaller architectures and dimensionality reduction. This study showed also that using the developed models for numerical investigations on the parameters affecting the properties of concrete is promising.
Purpose: The purpose of this study was to explore the effects of Patient Controlled Analgesia (PCA) on the postoperative patient's pain management and recovery of bowel movement with gastrointestinal cancer Method: The participants were 249 patients diagnosed with gastrointestinal disease and scheduled for elective surgery, who were recruited to either the postoperative patient-controlled analgesia group or epidural analgesia group. Participants aged 20 and above were recruited from P, K, D, and I university hospitals in B city. Pain visual analogue scale, and recovery of bowel movement according to PCA-related characteristics were measured using structured questionnaires from April 2005 through December 2005. Descriptive statistics t-test and F-test were used to analyze the data. SPSS WIN 10.0 program was used. Results: Mean score for pain was 62.31. Scores for pain on the visual analogue scale were significantly lower in the epidural-PCA than in the intravenous PCA, and also significantly lower in the absence of side effect of PCA than in the presence of side effect. Recovery time for bowel movement was significantly faster in the absence of side effect of PCA than in the presence of side effect. Conclusion: Based on the findings, there is a significant difference in pain and no difference in first passage of flatus according to PCA infusion route in patients who are post-operative for gastrointestinal cancer.
본 논문에서는 차영상 엔트로피 기반의 시선 인식 시스템을 제안한다. 차영상 엔트로피는 현재 입력된 영상과 참조 영상 또는 시선의 위치별 평균 영상들로부터 차영상을 획득하고, -255부터 +255까지의 히스토그램 빈도수를 이용하여 계산한다. 차영상 엔트로피 기반의 시선 인식방법은 2가지 방법이다. 1) 첫 번째 방법은 현재 입력된 영상과 시선 위치별 45개의 평균 영상들과의 차영상 엔트로피를 계산하여 현재 응시하고 있는 방향을 인식하고, 2) 두 번째 방법은 현재 입력된 영상과 45개의 참조 영상들과의 차영상 엔트로피를 계산하여 현재의 응시 방향을 인식한다. 참조 영상은 네 방향의 영상을 입력받아 시선 위치별 45개의 평균 영상을 이용하여 생성한다. 제안한 시스템의 성능을 평가하기 위해 PCA 기반의 시선 인식 시스템과 비교 실험을 하였고, 인식 방향은 좌상, 우상, 좌하, 우하 네 방향으로 하였으며, 45개의 참조 영상 또는 평균영상에 대하여 인식 영역을 변경하여 실험하였다. 실험 결과 차영상 엔트로피는 97.00%, PCA는 95.50%의 인식률을 보여 차영상 엔트로피 기반의 시스템이 PCA 기반의 시스템보다 1.50% 더 높은 인식률을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.