• Title/Summary/Keyword: pavement foundation

Search Result 57, Processing Time 0.025 seconds

Durability Performances of Concrete Produced with Recycled Bio-Polymer Based on Sargassum Honeri (괭생이모자반 기반의 자원순환형 바이오 폴리머를 혼입한 콘크리트의 내구성능)

  • Lee, Byung-Jae;Lee, Sun-Mok;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.445-451
    • /
    • 2019
  • In this study, we evaluated the durability of concrete produced with recycled polymer that could replace synthetic polymer, which is the main raw material of bridge deck concrete pavement. As a result of the slump and air content test, the requirements of the Korea Highway Corporation Standard were satisfied with all mixing conditions. The slump was lowered when incorporating the recycled bio-polymer, compared to other mix proportions concrete. In contrast, the compressive strength was increased by 6.3~24.4% when the recycled bio-polymer was mixed, compared to the concrete produced with synthetic polymer. It should be noted that the compressive strength was lowered when synthetic polymer was added to concrete mixture. Durability test results showed the best durability when incorporating synthetic polymer. The durability of concrete also increased as the amount of recycled bio-polymer increased, however, the impact was slightly smaller than that of synthetic polymer.

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

Development of Model for Structural Evaluation of Anti-Freezing Layer (동상방지층의 구조적 평가를 위한 모형 개발)

  • Lee, Moon-Sup;Heo, Tae-Young;Park, Hee-Mun;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • The thickness of anti-freezing layer has been empirically determined using the frost depth obtained from the freezing index and has not been generally considered as a structural layer in pavement design procedure. In fact, the anti-freezing layer makes a role in structural layer and enables to reduce the total thickness of pavement system. The objective of this study is to develop the statistical regression model for evaluating the structural capacity of anti-freezing layer using Falling Weight Deflectormeter(FWD) test data in asphalt pavements. The FWD testing was conducted at the embankment, cutting, and boundary area of various test sections to estimate the structural capacity of anti-freezing layer in different foundation condition. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer ranging from 0.4 to 82.6%. To determine the variables of statistical model, the correlation study has been conducted between various FWD deflection indexes and the anti-freezing layer thickness. It is found that the ${\Delta}BDI$(%)(${\Delta}Basin$ Damage Index(%)) is highly correlated with anti-freezing layer thickness. The ${\Delta}BDI$(%) model were developed for evaluating structural capacity of anti-freezing layer using linear mixed-effect models.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Analysis Models of Concrete Slabs-on-Grade Considering Horizontal Resistance at Slab Bottom and Behavior under Thermal Loads (슬래브 하부 수평저항을 고려한 지반위의 콘크리트 슬래브 해석 모델 및 온도하중에 의한 거동 분석)

  • Kim Seong-Min;An Zu-Og
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.271-282
    • /
    • 2006
  • The behavior of the concrete slabs on grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the thermal load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom employing the thin plate on an elastic foundation that is widely used for the analysis of concrete slabs-on-grade and rigid pavement systems. Finite element formulations have then been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vortical stiffness of the foundation when subjected to the temperature gradient between the top and bottom of the slab and the uniform temperature drop throughout the slab depth. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab when the thermal loads are applied.

An Analysis of AOI(Area of Interest) based on the Eye-Tracking Experiment according to Streetscape Elements (시선추적 실험에 따른 가로공간요소의 관심영역 분석)

  • Kim, Ju-Yeon;Park, Jun-Su
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.5
    • /
    • pp.65-74
    • /
    • 2017
  • The purpose of this research is to analyze characteristics of street elements when pedestrians have a view in the street. The research was utilized eye-tracking experiment and two times survey before and after experiment. The experiment is composed as follows. The data collection was conducted two days period from March 30 to 31, 2017. There were 43 participants who were all male and undergraduate students. In the data recording, the stimulus image was presented 65 seconds on a 23-inch monitor. Prior to analyzing data, the images were represented into five elements of AOI(area of interest). The fixation rate was divided by a period such as 'fixation time' and 'fixation count' parameters. The results were additionally obtained by linking analysis with the area ratio of AOI, time series analysis, and questionnaire. First of all, both building signs and advertisement standing boards draws attentions in participants. From a comparison between fixation rate and survey, the data have negative perspective view. Second, the advertisement standing boards are more eye-catching than other elements regardless of AOI size. It shows the priority of elements what should be developed in the environment. Third, the pavement is rarely seen in the fixation rate. Fourth, the trees are not a long frequency but viewed as a positive element. People want to keep the natural site in the street. In summative research, this method of extracting eye movement data would be provided a foundation data for developing streetscape plan based on scientific factors.

Bearing Capacity of Pavement Foundation by Waste Lime Material using the Dynamic Cone Pentrometer (동적 콘관입시험기를 이용한 폐석회 혼합 도로노반 성토체의 현장 지지력 평가)

  • Kim, Young-Seok;Hong, Seung-Seo;Bae, Gyu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.927-935
    • /
    • 2011
  • In-situ California Bearing Ratio(CBR) test has been widely used for evaluating the subgrade condition in pavements. However, because the in-situ CBR test is expensive and takes time for operation, it is difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) has been often utilized for estimating the subgrade strength in the field. The purpose of this paper is to determine the relationship between CBR value and DCP index of the embankment constructed with mixtures of soil and waste lime. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this field measurement, the geotechnical tests such as field water content, field density, field CBR test, and dynamic cone penetration test were conducted.

A Study on the Properties of Hwangto Permeable Block Using Ferro Nickel Slag (페로니켈슬래그를 혼입한 황토투수블럭 물성에 관한 연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.607-618
    • /
    • 2022
  • This study involves the development of a Hwangto permeable block for rainwater storage tanks. The permeable products that form continuous voids between Hwangto binders and aggregates are fine milled slag powder, which is an industrial by-product generated during the production of Hwangto and iron, and ferro nickel slag. The properties of Hwangto permeable blocks were studied using recycled resource aggregates. The target quality is based on KSF 2394. The Hwangto permeable block for a rainwater storage tank is made of water-permeable material, and the permeability of the Hwangto permeable block itself is 0.1mm/sec or higher, with a physical performance of over 5.0MPa in flexural strength and over 20.0MPa in compressive strength. The physical properties of Hwangto permeable block for rainwater storage tanks were researched and developed. In order to prevent flooding due to heavy rain in summer and the urban heat island phenomenon due to depletion of ground water, continuous pores are formed in the block to secure a permeability function to prevent rainwater from accumulating in the pavement of the floor, and to prevent slippage for comfortable and safe storage.

Sensitivity Analysis of 3-Dimensional FE Models for Jointed Concrete Pavements (줄눈 콘크리트포장 3차원 유한요소모델의 민간도 분석)

  • Yoo, Taeseok;Sim, Jongsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.435-444
    • /
    • 2006
  • This paper investigates the effect of 3-dimensional FE models to evaluation results of jointed concrete pavements which is back-calculated by AREA method. Sensitivity of 3-dimensional FE models developed to simulate the behavior of real jointed concrete pavement are analyzed after compared with 2-dimensional FE models using ILLISLAB. In comparison with 2-dimensional models, influence of concrete contraction under loading plate and base layer on surface deflections is more than that of loading configuration. Deflections at 3-dimensional model between linear and nonlinear temperature distribution under same temperature difference are similar, but noticeable differences are investigated in low elastic modulus of foundations. Dynamic deflections under loading plate are larger than static deflections in high elastic modulus of foundation, but smaller in low elastic modulus. Lower dynamic modulus of subgrade reactions are backcalculated by dynamic deflections than by static deflections. But reverse trend is investigated in the backcalculated elastic modulus of concrete which describes trends of the field backcalculation values calculated from AREA method.

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.