• Title/Summary/Keyword: pattern recognition neural network

Search Result 489, Processing Time 0.023 seconds

The Development of Pattern Classification for Inner Defects in Semiconductor packages by Self-Organizing map (자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발)

  • 김재열;윤성운;김훈조;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.80-84
    • /
    • 2002
  • In this study, researchers developed the est algorithm for artificial defects in the semic packages and performed to it by pattern recogn technology. For this purpose, this algorithm was I that researcher made software with matlab. The so consists of some procedures including ultrasonic acquistion, equalization filtering, self-organizing backpropagation neural network. self-organizing ma backpropagation neural network are belong to metho neural networks. And the pattern recognition tech has applied to classify three kinds of detective pa semiconductor packages. that is, crack, delaminat normal. According to the results, it was found estimative algorithm was provided the recognition r 75.7%( for crack) and 83.4%( for delamination) 87.2 % ( for normal).

  • PDF

Estimation of Engineering Properties of Rock by Accelerated Neural Network (가속신경망에 의한 암반물성의 추정)

  • 김남수;양형식
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.316-325
    • /
    • 1996
  • A new accelerated neural network adopting modified sigmoid function was developed and applied to estimate engineering properties of rock from insufficient geological data. Developed network was tested on the well-known XOR and character recognition problems to verify the validity of the algorithms. Both learning speed and recognition rate were improved. Test learn on the Lee and Sterling's problems showed that learning time was reduced from tens of hours to a few minutes, while the output pattern was almost the same as other studies. Application to the various case studies showed exact coincidence with original data or measured results.

  • PDF

The Robust Pattern Recognition System for Flexible Manufacture Automation (유연 생산 자동화를 위한 Robust 패턴인식 시스템)

  • Wi, Young-Ryang;Kim, Mun-Hwa;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.223-240
    • /
    • 1998
  • The purpose of this paper is to develop the pattern recognition system with a 'Robust' concept to be applicable to flexible manufacture automation in practice. The 'Robust' concept has four meanings as follows. First, pattern recognition is performed invariantly in case the object to be recognized is translated, scaled, and rotated. Second, it must have strong resistance against noise. Third, the completely learned system is adjusted flexibly regardless of new objects being added. Finally, it has to recognize objects fast. To develop the proposed system, contouring, spectral analysis and Fuzzy ART neural network are used in this study. Contouring and spectral analysis are used in preprocessing stage, and Fuzzy ART is used in object classification stage. Fuzzy ART is an unsupervised neural network for solving the stability-plasticity dilemma.

  • PDF

Review on Genetic Algorithms for Pattern Recognition (패턴 인식을 위한 유전 알고리즘의 개관)

  • Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • In pattern recognition field, there are many optimization problems having exponential search spaces. To solve of sequential search algorithms seeking sub-optimal solutions have been used. The algorithms have limitations of stopping at local optimums. Recently lots of researches attempt to solve the problems using genetic algorithms. This paper explains the huge search spaces of typical problems such as feature selection, classifier ensemble selection, neural network pruning, and clustering, and it reviews the genetic algorithms for solving them. Additionally we present several subjects worthy of noting as future researches.

A Comparative Study on Neural Network Algorithms for Partial Discharge Pattern Recognition (부분방전 패턴인식기법으로서의 Neural Network 알고리즘 비교 분석)

  • Lee, Ho-Keun;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

Pattern Recognition of EMG Signal using Artificial Neural Network (신경회로망을 이용한 근전도 신호의 특성분석 및 패턴 분류)

  • Yi, Seok-Joo;Lee, Sung-Hwan;Cho, Young-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.769-771
    • /
    • 2000
  • In this paper, pattern recognition scheme for EMG signal using artificial neural network is proposed. For manipulating ability, the movements of human arm are classified into several categories EMG signals of appropriate muscles are collected during arm movement. Patterns of EMG signals of each movement are recognized as follows: 1) The features of each EMG signal are extracted. 2) With these features, the neural network is trained by using feedforward error back-propagation (FFEBP) algorithm. The results show that the arm movements can be classified with EMG signals at high accuracy.

  • PDF

A Study on the Control of Recognition Performance and the Rehabilitation of Damaged Neurons in Multi-layer Perceptron (다층 퍼셉트론으 인식력 제어와 복원에 관한 연구)

  • 박인정;장호성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.2
    • /
    • pp.128-136
    • /
    • 1991
  • A neural network of multi layer perception type, learned by error back propagation learning rule, is generally used for the verification or clustering of similar type of patterns. When learning is completed, the network has a constant value of output depending on a pattern. This paper shows that the intensity of neuron's out put can be controlled by a function which intensifies the excitatory interconnection coefficients or the inhibitory one between neurons in output layer and those in hidden layer. In this paper the value of factor in the function to control the output is derived from the know values of the neural network after learning is completed And also this paper show that the amount of an increased neuron's output in output layer by arbitary value of the factor is derived. For the applications increased recognition performance of a pattern than has distortion is introduced and the output of partially damaged neurons are first managed and this paper shows that the reduced recognition performance can be recovered.

  • PDF

Study on Faults Diagnosis of Nuclear Pressure Boundary Components using Pattern Recognition of Nuclear Power Plant Simulator Data (원자력발전소 시뮬레이터 데이터의 패턴인식을 이용한 압력경계기기 고장 진단 연구)

  • Ahn, Hongmin;Choi, Hyunwoo;Kang, Seongki;Chai, Jangbom
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.48-53
    • /
    • 2017
  • We diagnosed the defect using the data obtained from the nuclear power plant simulator. In this paper, we diagnosed faults in the nuclear power plant system for discovery instead of the traditional single-component or device unit. We created the six fault scenarios and used a fault simulator to obtain the fault data. It was extracted pattern from acquired failure data. Neural network model was trained and simple pattern matching algorithm was applied. We presented a simulation result and confirmed that the applied algorithm works correctly.

A Study on the Monitoring of Chatter Vibration Using Pattern Recognition in the Plunge Grinding (원통연삭시 휠속도 변화의 패턴인식을 이용한 채터감시에 관한 연구)

  • 이종열;송지복;곽재섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.28-32
    • /
    • 1995
  • Bacause the chatter vibration is a main factor to damage on the quality and integrity, The cure is required peticurity in cykinderical plunge grinding. The chatter vibration relatied with wheel speed, workpiece and infeed rate. Therefore, we expressed more credible normal signal and chatter signal Pattern in accrdiance with wheel speed and acquired RMS signal of the accelerrometer. In thos study, after finding the chatter pattern, we applied two parameters, standard deviation and Kurtosis, to Neural Network.

  • PDF

Study on Design of Fingerprint Recognition Embedded System using Neural Network (신경망을 이용한 지문인식 임베디드 시스템 설계에 관한 연구)

  • Lee Jae-Hyun;Kim Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.775-782
    • /
    • 2006
  • We generated blocks from the direction-extracted fingerprint during the pre-process of the fingerprint recognition algorithm and performed training by using the direction minutiae of each block as the input pattern of the neural network, so that we extracted the core points to use in the matching. Based on this, we designed the fingerprint recognition embedded system and tested it using the control board and the serial communication to utilize it for a variety of application systems. As a result, we can verify the reliance satisfactorily.