• Title/Summary/Keyword: patient information

Search Result 2,965, Processing Time 0.036 seconds

Edge Computing-Based Medical Information Platform for Automatic Authentication Using Patient Situations

  • Gyu-Sung Ham;Mingoo Kang;Suck-Tae Joung;Su-Chong Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1049-1065
    • /
    • 2023
  • Recently, with the development of IoT, AI, and mobile terminals, medical information platforms are expanding. The medical information platform can determine a patient's emergency situation, and medical staff can easily access patient information through a mobile terminal. However, in the existing platform, emergency situation decision is delayed, and faster and stronger authentication is required in emergency situations. Therefore, we propose an edge computing-based medical information platform for automatic authentication using patient situations. We design an edge computing-based medical information platform architecture capable of rapid transmission of biometric data of IoT and quick emergency situation decision, and implement the platform data flow in emergency situations. Relying on this platform, we propose the automatic authentication using patient situations. The automatic authentication protects patient information through patient-centered authentication by using the patient's situation as an authentication factor, and enables quick authentication by automatically proceeding with mobile terminal authentication after user authentication in emergencies without user intervention. We compared the proposed platform with existing platforms to show that it can make quick and stable emergency decisions. In addition, comparing the automatic authentication with existing authentication showed that it is fast and protects medical information centered on patient situations in emergency situations.

Robust Image Similarity Measurement based on MR Physical Information

  • Eun, Sung-Jong;Jung, Eun-Young;Park, Dong Kyun;Whangbo, Taeg-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4461-4475
    • /
    • 2017
  • Recently, introduction of the hospital information system has remarkably improved the efficiency of health care services within hospitals. Due to improvement of the hospital information system, the issue of integration of medical information has emerged, and attempts to achieve it have been made. However, as a preceding step for integration of medical information, the problem of searching the same patient should be solved first, and studies on patient identification algorithm are required. As a typical case, similarity can be calculated through MPI (Master Patient Index) module, by comparing various fields such as patient's basic information and treatment information, etc. but it has many problems including the language system not suitable to Korean, estimation of an optimal weight by field, etc. This paper proposes a method searching the same patient using MRI information besides patient's field information as a supplementary method to increase the accuracy of matching algorithm such as MPI, etc. Unlike existing methods only using image information, upon identifying a patient, a highest weight was given to physical information of medical image and set as an unchangeable unique value, and as a result a high accuracy was detected. We aim to use the similarity measurement result as secondary measures in identifying a patient in the future.

Patient Monitoring System Base on U-Healthcare (U-Healthcare 기반의 환자 모니터링 시스템)

  • Jung, Won-Soo;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.575-582
    • /
    • 2008
  • The existing patient monitoring system when the patient want own information. The patient confirm information through the medical institution. But the patient monitoring system based on the U-Healthcare, the patient always confirms own information through the mobile device including rfid reader. The patient need RFID middleware design to provide wanting service when the RFID reader read patient's tag information. The RFID middleware is consisted of RFID module, ARM processor and RS-232 interface. The RFID module is used to be inputted user information and RS-232 interface pass information by RFID middleware. Also, This system is embodied by specific patient monitoring system using embedded exclusive use ARM processor. In this paper introduces concept and action principle of RFID middleware and embodied patient monitoring system that use Qt.

A Patient Treatment System Using RFID and Internet Communication

  • Jo, Heung-Kuk
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.586-590
    • /
    • 2010
  • Medical technology is gradually being developed by applying information technologies. Especially, RFID technology is being used for precise disease history information of patients [4]. And in case the patient is far away, the patient can be treated using network communication of the internet [5][6]. The internet makes us to treat or operate the patient without being restricted to time or space. If the above technologies are made as a system, the patient can be treated or operated without being restricted to time or space. In this paper, we present a patient treatment system has been implemented with a system using RFID and network communication of the internet [1][2][3][4]. The system is driven as follows. First, the information of patient can be checked from a remote PC, if the tag that a patient has been read through a reader. And a remote treatment is performed by controlling robot's arm with a joystick using internet network [19][20][21]. The RFID system was implemented in frequency of 125 KHz [1]. The information of patient can be checked with PDA, PC and C-LCD using Bluetooth and WLAN [7][8][9][10]. For the treatment and operation of the patient, the robot's arm has been formed using AX-12 motor, joystick and two buttons [11][12][13][14][15] [17][18].

Design of SPMR using URN based UCI with RFID (RFID와 UCI 기반의 URN을 활용한 SPMR 설계)

  • Jang, Doc-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.291-297
    • /
    • 2007
  • Linking patient's medical records throughout country is required to get patient's accurate information which is helpful for doctor to diagnosis patient's symptoms more exactly. With shortening of time and preventing of retest, patient can be survived or alleviate suffering. Purpose of this paper is to design combined identification system linking patient's RFID card with medical digitalized Chart to share patient's information between the hospitals. With research and review of pre-studied related identification system, standardization, and UCI-RFID linkage study, SPMR(sharing patient's medical record) has been designed for doctors to make a medical treatment properly at the right time and alleviate patient's pain. SPMR(sharing patient's medical record) which will take information needed and pay for information usage to related hospitals has been designed for doctors to make a medical treatment properly at the right time and alleviate patient's pain.

  • PDF

Database for Patient Information Management in Radiation Oncology Department

  • Lim, Sangwook;Kim, Kyubo;Ahn, Sohyun;Lee, Sang Hoon;Lee, Rena;Cho, Samju
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 2018
  • The purpose of this study is to build a database of patient information for efficient radiotherapy management. Microsoft Office Access was used to build the database owing to its convenience and compatibility. The most important aspect when building the patient database is to make the input and management of patient information efficient at every step of radiotherapy process. The information input starts from the patient's first visit to the radiation therapy department and ends upon completion of the radiotherapy. The forms for each step of radiotherapy process include the patient information form, the radiotherapy schedule form, the radiotherapy information form, the simulation order form, and the patient history form. Every form is centrically connected to the radiation oncology department's patient information form. A test revealed that the database was found to be efficient in managing patient information at each step. An important benefit of this database is improved efficiency in radiotherapy management. Information on patients who received radiotherapy is stored in a database. This means that this clinical data can be found easily and used in future, which will be helpful in research studies on the radiation oncology department. Benefits such as these will potentially contribute to improved radiotherapy quality.

A study on mobile circulation loop DB systems for patient-centered serbices (환자 중심의 서비스를 위한 모바일 순환 Loop DB 시스템 연구)

  • Lee, Jae-Gwang;Kim, Young-Huyk;Lim, Il-Kwon;Lee, Jae-Pill;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.361-364
    • /
    • 2012
  • Through USN (Ubiquitous Sensor Network) is collected the patient's vital information in real-time, also information collected will be stored in the DB (Date Base), frequent use hospital saved patient's vital information for DB. Stored in the patient's vital medical information stored in the patients with frequent hospital patient to hospital if the patient's vital information is stored in DB. But, stored location is within hospital server or stored in a PC environment, because If utilize other Hospital existing hospitals will need to request. However, Existing hospital have problem for security, authentication, management, cost, manpower, such as, because other hospitals and the exchange of information does not come easily. So, If has the advantage of the patient and the patient's vital information is stored on mobile devices that you can use as DB. It is important to find information quickly and accurately, in this study, Is A study on mobile circulation loop DB systems for patient-centered serbices.

  • PDF

Design of Rough Set Theory Based Disease Monitoring System for Healthcare (헬스 케어를 위한 RDMS 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1095-1105
    • /
    • 2013
  • This paper proposes the RDMS(Rough Set Theory based Disease Monitoring System) which efficiently manages diseases in Healthcare System. The RDMS is made up of DCM(Data Collection Module), RDRGM(RST based Disease Rules Generation Module), and HMM(Healthcare Monitoring Module). The DCM collects bio-metric informations from bio sensor of patient and stores it in RDMS DB according to the processing procedure of data. The RDRGM generates disease rules using the core of RST and the support of attributes. The HMM predicts a patient's disease by analyzing not only the risk quotient but also that of complications on the patient's disease by using the collected patient's information by DCM and transfers a visualized patient's information to a patient, a family doctor, etc according to a patient's risk quotient. Also the HMM predicts the patient's disease by comparing and analyzing a patient's medical information, a current patient's health condition, and a patient's family history according to the rules generated by RDRGM and can provide the Patient-Customized Medical Service and the medical information with the prediction result rapidly and reliably.

A Study on Fall Prevention System in Patient Bed

  • Cho, Youngseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.101-106
    • /
    • 2019
  • In this paper, we investigate the patient fall prevention system to prevent the patient from falling out of the bed unintentionally on the bed of the bed. Patients stay in bed for many hours of hospitalization. During the hospitalization period, patients have low controllability of the body, as compared with normal persons, and fall due to intentional movements, resulting in a fall of the patient, can be a fatal threat to the patient. Therefore, an efficient fall prevention system is required. In this paper, the distance map to the patient is generated by the distance measuring sensor on the bed of the patient, and the risk is determined by estimating the position of the patient based on the distance map. As a result, when the distance map of the dangerous area is 150 mm or more, it is determined to be dangerous, and good results are obtained.

A Study on Medical Information Platform Based on Big Data Processing and Edge Computing for Supporting Automatic Authentication in Emergency Situations (응급상황에서 자동인증지원을 위한 빅데이터 처리 및 에지컴퓨팅 기반의 의료정보플랫폼 연구)

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.87-95
    • /
    • 2022
  • Recently, with the development of smart technology, in medical information platform, patient's biometric data is measured in real time and accumulated into database, and it is possible to determine the patient's emergency situations. Medical staff can easily access patient information after simple authentication using a mobile terminal. However, in accessing medical information using the mobile terminal, it is necessary to study authentication in consideration of the patient situations and mobile terminal. In this paper, we studied on medical information platforms based on big data processing and edge computing for supporting automatic authentication in emergency situations. The automatic authentication system that we had studied is an authentication system that simultaneously performs user authentication and mobile terminal authentication in emergency situations, and grants upper-level access rights to certified medical staff and mobile terminal. Big data processing and analysis techniques were applied to the proposed platform in order to determine emergency situations in consideration of patient conditions such as high blood pressure and diabetes. To quickly determine the patient's emergency situations, edge computing was placed in front of the medical information server so that the edge computing determine patient's situations instead of the medical information server. The medical information server derived emergency situation decision values using the input patient's information and accumulated biometric data, and transmit them to the edge computing to determine patient-customized emergency situation. In conclusion, the proposed medical information platform considers the patient's conditions and determine quick emergency situations through big data processing and edge computing, and enables rapid authentication in emergency situations through automatic authentication, and protects patient's information by granting access rights according to the patient situations and the role of the medical staff.